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Introduction



Two key concepts for rangeland management

• For continuous grazing, spatial distribution of livestock is the 
main issue to pay attention.

• Stocking rate is the most powerful tool for rangers to adequate 
the management strategy to the carrying capacity of pastures.

• Generally, spatial distribution and stocking rates are studied 
separately, however, the effects of grazing intensity are the result 
of both combined.  
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The unevenness of spatial distribution
• How should we approach the

evaluation of the effects of
unevenness of distribution?

a. Key area: portion of the
pasture which serve as an
indicator of the condition of the
entire system (SRM, 1998)

b. Sacrifice area: preferred areas
overused by livestock even
under light stocking rates
(Holecheck et. al, 1998)
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Impacts of a poor management
• Soil degradation

• Losses of pastures quality and quantity

• Negative impacts to biodiversity (both plants and wildlife)

• If combined with high stocking rates, the effects can be irreversible, especially 
in arid/semiarid conditions

• It all depends on the grazing system, climatic conditions, type of animal, etc…
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The question to answer

• Can the vegetation measured by remote sensing serve 
as a predictor of grazing intensity?
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Materials and Methods



Farm A
• A common land of 630 ha with a herd of 230 

cattle cows. 
• Almost half of the area (46%) has steep 

slopes (>20%). 

• Commercial farm of 250 ha divided in 3 
paddocks (43 to 108 ha) with a stock of 85 
cattle cows. 

• Slopes were between 10 and 20%. 
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Farm B



Animal tracking

• 200 commercial GNSS tracking
collars (Digitanimal Ltd., Madrid,
Spain)

• Time resolution of 30 minutes.

• Studied period was between 2017
and 2022.
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Data preprocessing
• Removal of gross errors of the GNSS collars.

• Remove not installed collars

• Remove days with less than 12 positions

• Resampling of trajectories for:
a. Standardize the amount of data per day and collar
b. Standardize the interval between signals to exactly 30 minutes

• Classifying between non-active and grazing behavior based on Hassan-
Vázquez et. al, 2022.
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Grazing intensity
• Kernel Density Estimation (KDE) values per month

were calculated from GNSS collar data and
standardized as:

• KDE values were computed separately for all collected
data and grazing behavior.

• KDE pixel resolution used was 60x60 meters to match
with Sentinel 2 grid.
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Spectral indexes
Index Type of 

index
Index calculation Satellite

NDVI Vegetation
(𝐵𝐵𝐵𝐵− 𝐵𝐵𝐵𝐵)
(𝐵𝐵𝐵𝐵+ 𝐵𝐵𝐵𝐵) Sentinel 2

GNDVI Vegetation
(𝐵𝐵𝐵𝐵− 𝐵𝐵𝐵𝐵)
(𝐵𝐵𝐵𝐵+ 𝐵𝐵𝐵𝐵) Sentinel 2

GRVI Vegetation
(𝐵𝐵𝐵𝐵− 𝐵𝐵𝐵𝐵)
(𝐵𝐵𝐵𝐵+ 𝐵𝐵𝐵𝐵) Sentinel 2

RGBVI Vegetation
𝐵𝐵𝐵𝐵 − (𝐵𝐵𝐵𝐵 ∗ 𝐵𝐵𝐵𝐵)

(𝐵𝐵𝐵𝐵 ∗ 𝐵𝐵𝐵𝐵) + (𝐵𝐵𝐵𝐵+ 𝐵𝐵𝐵𝐵) Sentinel 2

AVI Vegetation 3 (𝐵𝐵𝐵𝐵 ∗ 1 − 𝐵𝐵𝐵𝐵 ∗ (𝐵𝐵𝐵𝐵 − 𝐵𝐵𝐵𝐵) Sentinel 2

SAVI
Vegetation 𝐵𝐵𝐵𝐵 − 𝐵𝐵𝐵𝐵

𝐵𝐵𝐵𝐵 + 𝐵𝐵𝐵𝐵 + 0,428
∗ (1,428) Sentinel 2

EVI
Vegetation

(𝐵𝐵𝐵𝐵− 𝐵𝐵𝐵𝐵)

𝐵𝐵𝐵𝐵+ 6 + 𝐵𝐵𝐵𝐵− 7,500 ∗ 𝐵𝐵𝐵𝐵 + 1
∗ 2,500

Sentinel 2

GCI
Vegetation

𝐵𝐵𝐵𝐵
𝐵𝐵𝐵𝐵

− 1 Sentinel 2

BSI
Soil

𝐵𝐵𝐵𝐵+ 𝐵𝐵𝐵𝐵 − (𝐵𝐵𝐵𝐵+ 𝐵𝐵𝐵)
𝐵𝐵𝐵𝐵+ 𝐵𝐵𝐵𝐵 + (𝐵𝐵𝐵𝐵+ 𝐵𝐵𝐵𝐵) Sentinel 2

MSI
Water

𝐵𝐵𝐵𝐵
𝐵𝐵𝐵𝐵 Sentinel 2

NDMI Water
(𝐵𝐵𝐵𝐵− 𝐵𝐵𝐵𝐵)
(𝐵𝐵𝐵𝐵+ 𝐵𝐵𝐵𝐵) Sentinel 2

NDWI Water
(𝐵𝐵𝐵𝐵− 𝐵𝐵𝐵𝐵)
(𝐵𝐵𝐵𝐵+ 𝐵𝐵𝐵𝐵) Sentinel 2
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Monthly average of indexes and differences between the 
first and last week of each month were calculated. Raw 
band data also was analyzed.



Vegetation type

• RGB orthoimages from PNOA with 0,25 meters
resolution were used to vegetation classification by
using a semi-automated classification algorithm (i.e
Minimum distance) included in SCP QGIS plugin.

• After the classification, PNOA pixels were merged with
60-meter Sentinel 2 pixels.

• Percentage of grass area of each merged pixel was
calculated. Pixels below 75% were removed from the
analysis.
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Statistical processing
• Pearsons correlations between the S2 bands and spectral indexes 

(monthly averages and differences) and the grazing intensity (KDE 
standardized).

• Normalization of the bands and spectral indexes (SI) values.

• Spatial autorregresive (SAR) models were computed to predict grazing 
intensity from satellite data. 

• External validation in both spatial and temporal domains:
a. Spatial: Farm A served as training set and Farm B as testing set
b. Temporal: Year 2022 was used as testing set
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Results



Correlations of grazing intensity and spectral indexes
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• Correlated spectral indexes (r >0,8) were removed to avoid collinearity.

• Best results appeared when we use the adjusted KDE for grazing behavior.



SAR models
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Fitted model Spatial validation Time validation

Monthly average of NDVI and EVI, apparently, do not explain any variance of grazing intensity (p>0,05). The monthly 
difference of those indexes, however, can explain part of the variance of grazing intensity (p<0,000).

Type of model AIC

SAR 22688

Lm 23463

Y=ρWY+Xβ+ϵ

AU * day ~ B2m + B8m + NDVIm + EVIm + B2d + B8d + B11d + NDVId + GRVId + NDMId + CGId + factor(season)



Conclusions

• Include spatial component in the model improves the predictive 
capacity of the model.

• Classification model for discriminate grazed and non-grazed 
pixels could improve the performance of the SAR model.

• Remote sensing data can be useful to track the grazing intensity of 
livestock but has limitations.
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