Prediction of blood β-hydroxybutyrate and hyperketonemia based on milk mid-infrared spectra in dairy cows

S. Gruber¹, A. Köck², C. Egger-Danner², M. Iwersen³, B. Fuerst-Waltl¹, J. Sölkner¹

¹BOKU University, Department for Sustainable Agricultural Systems, Institute of Livestock Sciences, Gregor-Mendel-Str. 33/II, 1180 Vienna, Austria ²ZuchtData EDV-Dienstleistungen GmbH, Dresdner Str. 89, 1200 Vienna, Austria

³University of Veterinary Medicine, Vienna, Clinical Department for Farm Animals and Food System Science, Veterinarplatz 1, 1210 Vienna, Austria.

Contact: stefan.gruber@boku.ac.at

Introduction

- ✓ Hyperketonemia occurs due to an excessive energy deficit in early-lactation dairy cows
- ✓ Detected by blood metabolites, such as β-hydroxybutyrate (BHB)
- ✓ Biochemical composition of milk is linked to health status and metabolism
- ✓ Mid-infrared (MIR) spectroscopy is routinely used to measure milk composition
- ✓ MIR spectra are thus a potential alternative to predict blood BHB content and identify cows at risk for hyperketonemia

Methods

Dataset

- √ 1005 observations of daily BHB concentration and MIR spectra
- ✓ BHB measured from capillary cow blood by a handheld device
- ✓ 1st and 2nd test-day in early lactation
- ✓ September 2020 to March 2021
- ✓ 662 Fleckvieh and Holstein cows from 49 farms

Prediction models

✓ Regression analysis for BHB concentration (log10 transformed)

Aim

ones

- ✓ Discrimination analysis for **hyperketonemia class** (based on BHB threshold)
- ✓ Prediction variables: **212** selected 1st derivative **MIR spectra & test-day variables** (i.e. milk yield, fat%, protein%, lactose%, days in milk, lactation)
- ✓ 10-fold random external validation by cow or farm
- ✓ Different machine learning algorithms:

Partial least squares (PLS)
Support Vector Machine (SVM)
Artificial Neural Network (ANN)

✓ Develop prediction equations for blood BHB

concentration using milk MIR spectroscopy

✓ Discriminate cows with hyperketonemia from healthy

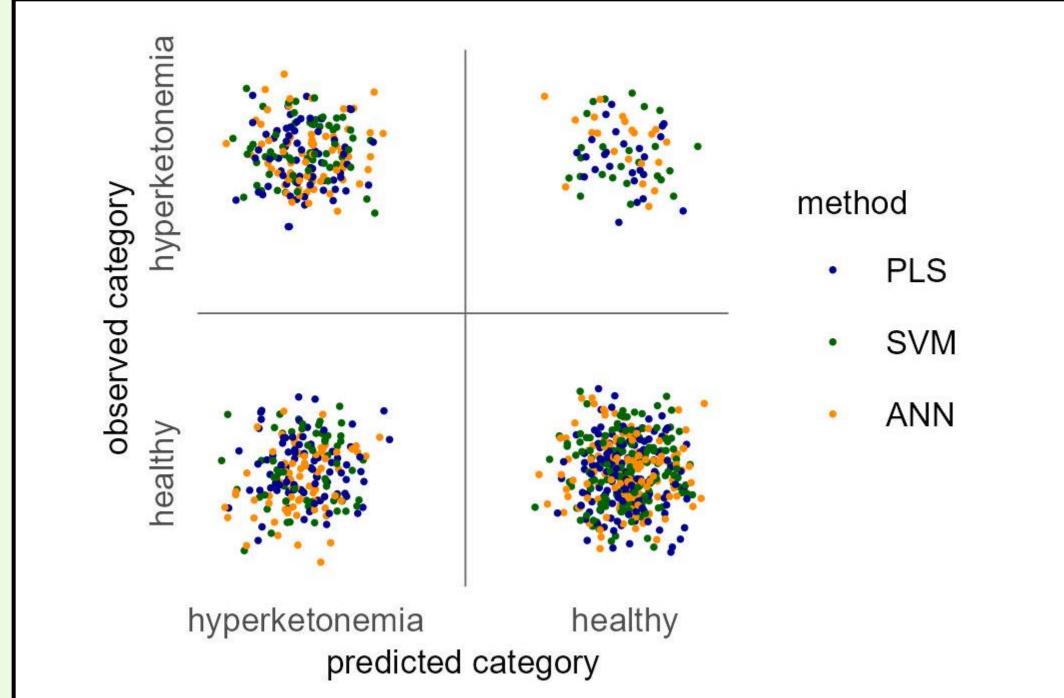
Results

Table 1. Fitting statistics of BHB prediction models based on MIR spectra in different validation settings

	Vali	Validation by cow			Validation by farm			
	PLS	SVM	ANN	PLS	SVM	ANN		
RMSE	0.240	0.235	0.240	0.272	0.267	0.257		
R	0.555	0.571	0.562	0.448	0.468	0.469		
R ²	0.312	0.330	0.319	0.206	0.224	0.225		
RPD	1.117	1.190	1.199	1.030	1.040	1.084		
RPIQ	1.429	1.472	1.496	1.229	1.294	1.342		

RMSE = root mean square error; R = correlation between predicted and observed BHB; $R^2 = coefficient$ of determination; RPD = ratio performance deviation; RPIQ = ratio performance interquartile distance.

Table 2. Performance of hyperketonemia classification models based on MIR spectra and test-day variables in different validation settings


	Valid	Validation by cow			Validation by farm			
	PLS	SVM	ANN	PLS	SVM	ANN		
Global Accuracy	0.697	0.725	0.712	0.686	0.699	0.699		
Sensitivity	0.678	0.705	0.677	0.636	0.686	0.650		
Specificity	0.704	0.733	0.723	0.703	0.702	0.716		
PPV	0.441	0.481	0.460	0.431	0.430	0.447		
NPV	0.865	0.877	0.866	0.847	0.873	0.854		

PPV = positive predictive values; NPV = negative predictive values.

measured BHB (mmol/l) Model of the state of

Figure 1. Relationship between measured and MIR-predicted BHB content in cow blood in validation by cow for different machine learning algorithms

predicted BHB (mmol/l)

Figure 2. Comparison of observed and MIR-predicted hyperketonemia categories in validation by cow for different machine learning algorithms

Discussion

- ✓ Prediction of blood BHB concentration from milk MIR spectra possible but with moderate precision
- ✓ Classification of cows for hyperketonemia with reasonable accuracy
- ✓ However, high proportion of false positive classifications
- ✓ Various machine learning algorithms give similar results
- ✓ Results of developed models may be compared to currently implemented indicators for further assessment
- ✓ Genetic parameters of MIR-predicted BHB traits should be evaluated

Conclusion

- ✓ Potential to monitor cows with hyperketonemia using MIR spectral data
- ✓ Possibility to generate large-scale novel phenotypes for animal breeding

Mit Unterstützung von Bund und dafne.at