

Potential of cow-side blood tests, MIR-data or wearable sensor devices for breeding for metabolic health in dairy cows?

K.Schodl, B.Fuerst-Waltl, D4Dairy-Consortium, C.Egger-Danner **EAAP 2024**

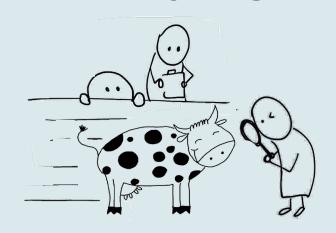
What is it about?

Ketosis in early lactation

- Breeding for metabolically stable cows
- Data is scarce, low frequencies and heritabilities of veterinary diagnoses

Tests for measuring ketone bodies in the blood

- Handheld devices allow on-farm use
- Early lactation is the most critical phase
- Additional work-load for farmers



What do we need?

Trade-off between validity and feasibility of phenotyping Auxiliary traits with potential for large scale phenotyping

- Milk recording including MIR-derived ketosis risk
- Sensor devices recording activity, rumination, eating behavior, etc.

Aim: analyse potential of MIR-derived ketosis risk from milk recordings and data from wearable sensor devices for breeding for metabolic health in dairy cows.

Farms, animals and data

• 25 Fleckvieh farms equipped with sensor system were motivated to participate in the D4Dairy project

Collar mounted sensor with output variables

- Activity: non-dimensional number
- Rumination: min in 24 hours
- Eating: min in 24 hours

2 hour intervals

- Milk recordings from Rinderdatenverbund (RDV) for KetoMIR
- Blood ketosis tests measuring β-hydroxybutyrate (BHB) levels

Trait definition

BHB value mmol/L

BHB value squared

BHB value log10

Blood ketotest

n=3,034 cows from 63 farms

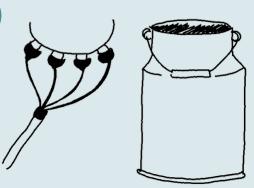
Score 1 BHB ≤1.2 mmol/L, healthy

Score 2 BHB 1.3 – 2.9 mmol/L, subclinical ketosis

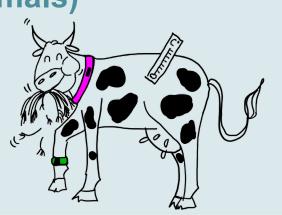
Score 3 BHB ≥3 mmol/L, clinical

0 BHB ≤1.2 mmol/L, **healthy**

1 BHB ≥1.3 – 2.9 mmol/L, **diseased**



Trait definition


KetoMIR (n=4,237 milk recordings, 3,158 cows, 64 farms)

- MIR-predicted ketosis risk
- KM1, KM2, KM3
- Data used up to 30 days in milk

Sensor data (n_{act}=2,096 / n_{rum}=3,695 / n_{eat}=1,599, 1,630 animals)

- Sum (activity) or mean (rumination, eating)
- Standard deviation (SD)
- At testday

Data analysis

Bivariate linear animal models

- Fixed effects
 - Lactation (1,2,3,4, ≥5)
 - Sensor generation (activity & rumination or eating & rumination)
 - Days in milk (linear continous effect)
- Random effects
 - Genetic effect of the animal
 - Permanent environment
 - Residual

VCE 6.0 (Groeneveld et al., 2010)

Results ketosis traits

Ketotest traits	h² (S.E.)
BHB value	0.16 (0.04)
BHB ²	0.17 (0.04)
Log10(BHB)	0.18 (0.04)
Ketosis 1,2,3	
Ketosis 0/1	
KetoMIR	

Results ketosis traits

Ketotest traits	h² (S.E.)
BHB value	0.16 (0.04)
BHB ²	0.17 (0.04)
Log10(BHB)	0.18 (0.04)
Ketosis 1,2,3	0.19 (0.03)
Ketosis 0/1	0.09 (0.03)
KetoMIR	0.08 (0.04)

Results ketosis traits

Ketotest traits	h² (S.E.)	r _a KetoMIR (S.E.)
BHB value	0.16 (0.04)	0.47 (0.03)
BHB ²	0.17 (0.04)	0.54 (0.30)
Log10(BHB)	0.18 (0.04)	0.41 (0.26)
Ketosis 1,2,3	0.19 (0.03)	0.40 (0.26)
Ketosis 0/1	0.09 (0.03)	0.28 (0.28)
KetoMIR	0.08 (0.04)	

Results sensor traits

Sensor traits	h² (S.E.)
Activity sum	0.23 (0.09)
Activity SD	0.35 (0.15)
Rumination mean	0.28 (0.02)
Rumination SD	0.08 (0.03)
Eating mean	0.39 (0.09)
Eating SD	0.12 (0.07)

Results sensor traits

Sensor traits	h² (S.E.)	r _a BHB (S.E.)
Activity sum	0.23 (0.09)	-0.94 (0.17)
Activity SD	0.35 (0.15)	-0.62 (0.24)
Rumination mean	0.28 (0.02)	0.00 (0.02)
Rumination SD	0.08 (0.03)	-0.06 (0.19)
Eating mean	0.39 (0.09)	0.38 (0.09)
Eating SD	0.12 (0.07)	0.14 (0.16)

Results sensor traits

Sensor traits	h² (S.E.)	r _a BHB (S.E.)
Activity sum	0.23 (0.09)	-0.94 (0.17)
Activity SD	0.35 (0.15)	-0.62 (0.24)
Eating mean	0.39 (0.09)	0.38 (0.09)

- Genetic correlations were high for activity traits and moderate for mean eating time
- Moderate to high heritabilities for sensor traits → use in breeding?!

Discussion & conclusions

- Moderate heritability for blood BHB-level from on-farm blood ketotests, but routine implementation challenging
- KetoMIR genetically correlated to BHB-level, but has lower heritability
- Sensor traits are heritable and partly highly correlated to BHB-level
 - Activity derived traits show promising heritabilities and correlations
- Metabolic index could include KetoMIR and sensor derived traits
 - Inclusion of farms without sensors through milk recording
 - Correlations with other traits in the TMI?
- (Side-)Effect of selection based on sensor data on animal welfare?
 - Genetically: correlation to health and fitness traits
 - Welfare or more or less "active" animals?

Thank you for your attention!

BitKuh

