Can daily rumination time be used to breed for resilient Holstein cows?

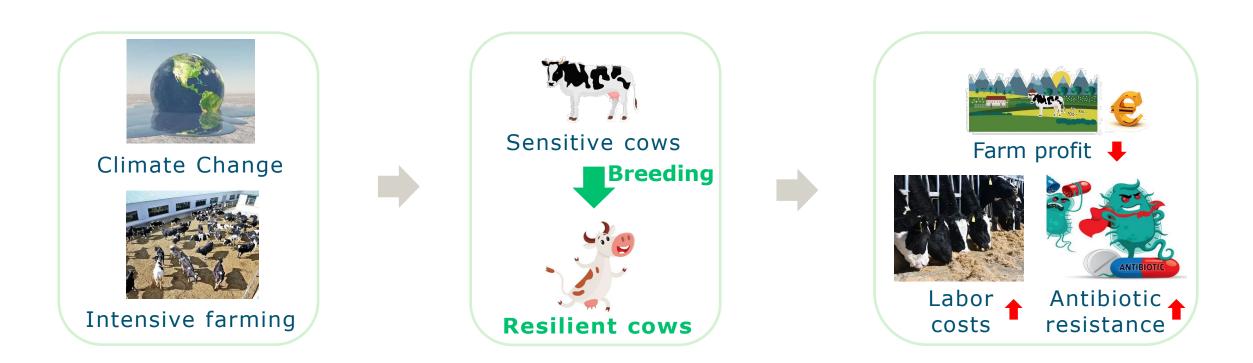
Wenqi Lou^{1,2,3}, B. Ducro², A. van der Linden³, Y. Wang¹

¹China Agricultural University, College of Animal Science and Technology

²Wageningen University & Research, Animal Breeding and Genomics

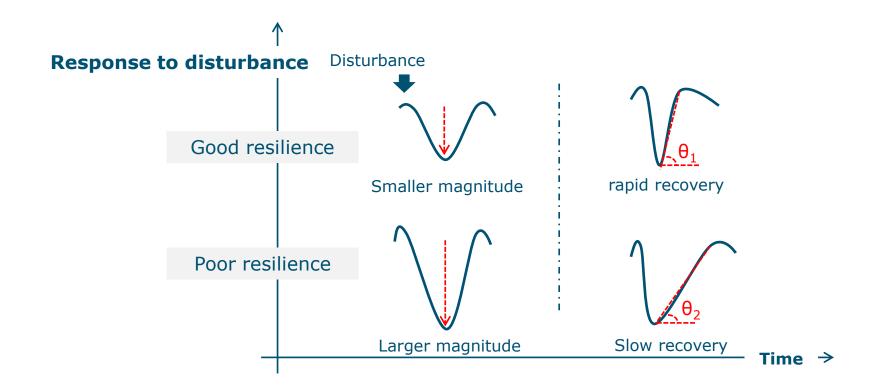
³Wageningen University & Research, Animal Production Systems

Date: 3rd Sep 2024



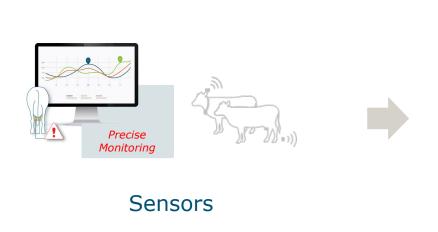
Introduction - Environment \rightarrow Cow \rightarrow Environment

- Improving resilience results in more sustainable dairy farming
- Resilience can be improved by breeding



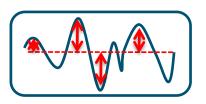
Introduction - Resilience

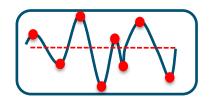
Resilient cows are little affected by disturbances / rapidly recover to the normal



Introduction - Resilience derived from rumination patterns

Why look at daily rumination time (DRT):


- First and basic activity for ruminants
- Sensitive to disease and other stress
- High heritability (~0.4)



Introduction - Resilience indicators

1. Natural log-transformed Variance of deviations (LnVar)

2. Autocorrelation of time series of deviations (Autocorr)

Indicators	Representation	Good resilience	Poor resilience
LnVar	Magnitude	Lower value	< Higher value
Lag =1 Autocorr	Duration	Close to 0	Far from 0

Objectives

(1) To define resilience indicators based on DRT

2 To estimate genetic parameters of DRT-resilience indicators


To estimate genetic correlation between DRT-resilience indicators to production, reproduction, and disease performance

Materials

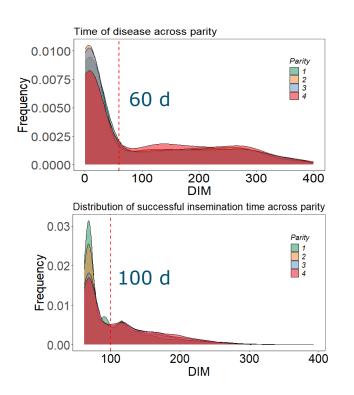
DRT data was recorded by the SCR tag:

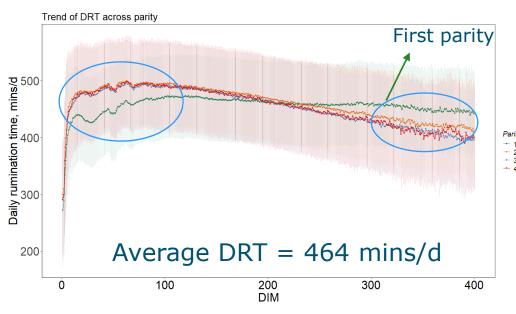
- 9,299 dairy cows ♀ with 14,551 lactations (Parity: 1 ~ 4+)
- 3,075,671 observations
- Recording period: 1~400 DIM (1~100, 250~400 DIM)

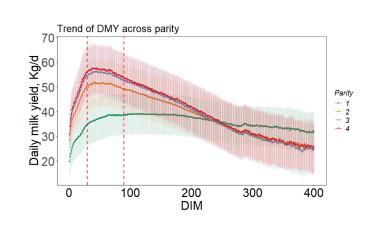
Methods

- 1 Obtaining undisturbed pattern
- Quantile regression: $y_t = \beta_0 + \beta_1 t + \beta_2 t^2 + \beta_3 t^3 + \beta_4 t^4 + \varepsilon$
- 2 Deviations between real-time and undisturbed DRT patterns
 - a) LnVar (natural log-transformed Var)
 - b) Lag-1 Autocorr
- 3 Genetic parameters of indicators and their correlations with other traits:

Uni- and bi-variate repeatability animal models

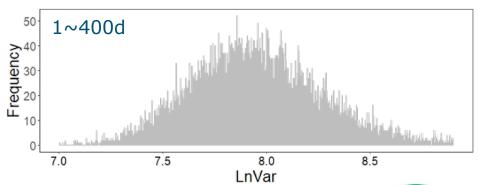

$$y_{ijklm} = BYM_i + CYM_j + Parity_k + a_l + pe_l + \varepsilon_{ijklm}$$

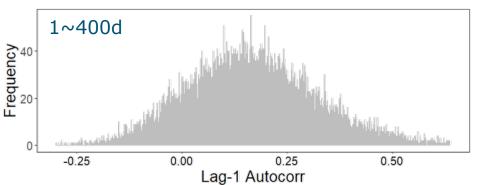




Results: DRT patterns across parities

- ✓ Significant fluctuations in the early lactation due to calving, insemination, and disease events
- ✓ These results aligned with other studies, suggesting the data is reliable.



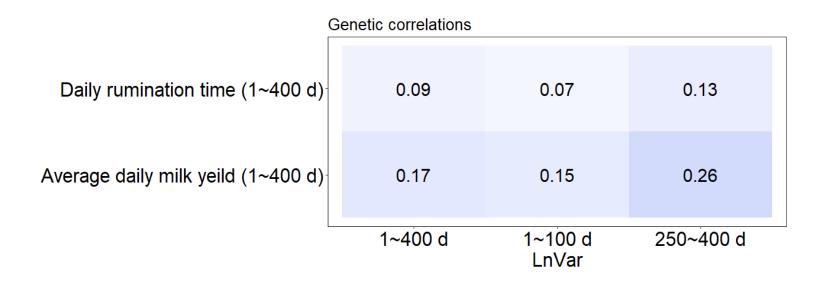


Results: 1 Resilience indicators

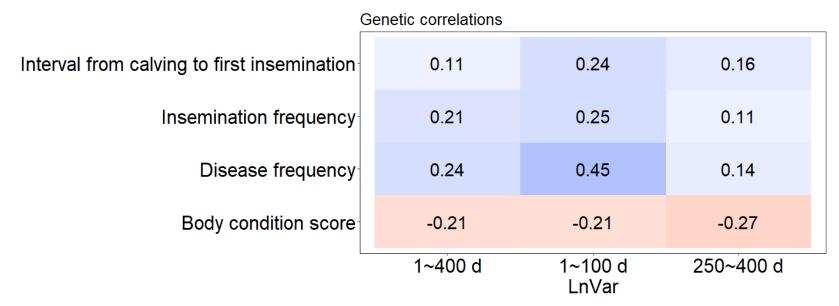
Indicators	Periods	Mean	SD	CV, %
	1~400 d	7.95	0.31	3.85
LnVar	1~100 d	8.11	0.42	5.22
	250~400 d	7.69	0.53	6.91
Lag-1 Autocorr	1~400 d	0.17	0.15	90.89
	1~100 d	0.21	0.22	104.48
	250~400 d	0.03	0.24	735.91

Results: 2 Resilience indicators' genetic parameters

Periods -	LnVar		Lag-1 Autocorr		
	Heritability	Repeatability	Heritability	Repeatability	
1~400 d	0.15 (0.02)	0.32	0.07 (0.01)	0.14	
1~100 d	0.06 (0.01)	0.13	0.03 (0.01)	0.05	
250~400 d	0.05 (0.01)	0.17	0.02 (0.01)	0.05	


- ✓ Heritability and repeatability were lower during 1~100 and 250~400 d
 - ✓ Due to higher residual variance → Many unknown environmental factors
- ✓ Genetic correlation was 0.16 between two indicators during 1~400 d

Results: (3) Genetic correlations of LnVar with other traits


- ✓ Genetic correlations were close to 0 between LnVar and daily rumination time
- ✓ Positive but low genetic correlations were found between LnVar and average daily milk yield

Results: (3) Genetic correlations of LnVar with other traits

- ✓ LnVar during 1~400 d had a low to moderate genetic correlation (-0.21 to 0.24) with other traits
- ✓ Cow with low LnVar had better fertility, lower disease incidence, and higher body condition score

Take home messages

1 Resilience indicators can be derived from daily rumination time patterns in Holstein dairy cows

2 Resilience indicators have a low (Lag-1 Autocorr) to moderate (LnVar) heritability, and can be used in breeding

③ Resilient cows tend to have better fertility, higher disease resistance, and higher body condition score

Acknowledgements

Team members:

(AustAsia Group ltd.) Minglu Yang, Cheng Mei

(SCR Engineers Ltd., Netanya, Israel)

Thanks for your attention! Q&A

wenqi.lou@wur.nl

