

Faculty of Agricultural and Nutritional Science

Use of machine learning methods to predict feed efficiency traits in dairy cows using phenotypic and genomic information

A. Seidel¹, L. Stahmer¹ and G. Thaller¹

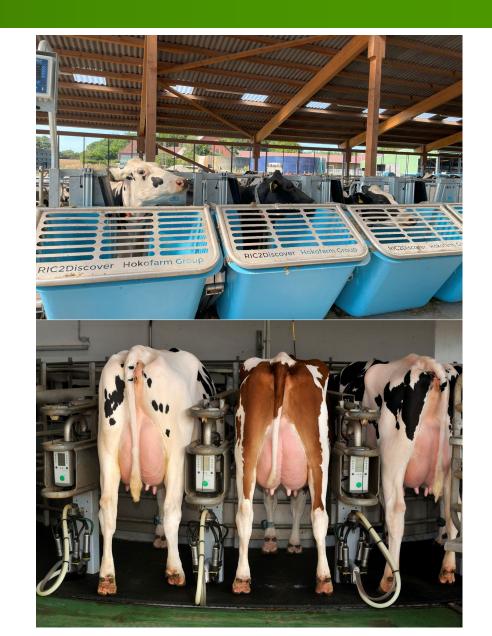

¹ Institute of Animal Breeding and Husbandry, Kiel University

75th Annual EAAP Meeting Florence, Italy **September 1st – 5th, 2024**

Session 43, Abstract number 2216204, aseidel@tierzucht.uni-kiel.de

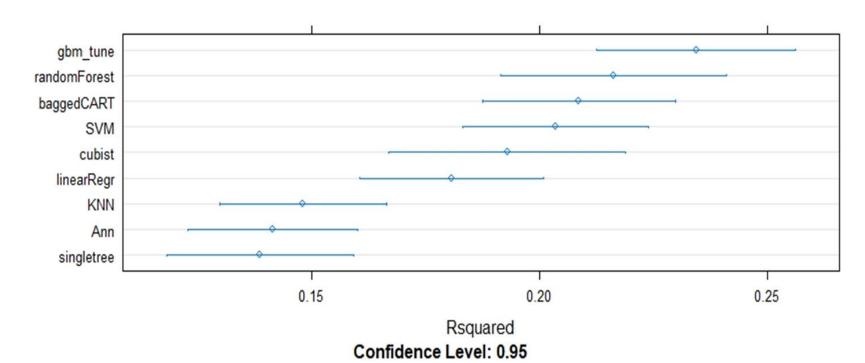
Christian-Albrechts-University Kiel

Institute of Animal Breeding and Husbandry



Background

- By optimizing feed efficiency, farmers can achieve higher milk production with the same or even lower amount of feed
 - → Plays an important role in the profitability and sustainability of dairy farms
- Measuring feed efficiency traits on individual animal level is costly
 - → Availability of on-farm data is limited


Is it possible to estimate direct production values of cows at farm level?

Background

- Feed efficiency traits: Feed intake, energy balance and feed efficiency
 - Preliminary study → Predicting feed intake based on confirmation and live weight data of cows

Objective of the study

Genotypic data (SNPs) + phenotypic data (production data)

Supervised machine learning algorithms (Random Forest, Support Vector Machine, Extreme Gradient Boosting)

Phenotypic performance (Feed intake, energy balance and feed efficiency)

Phenotypic data from 1684 dairy cows on 9 farms (1-10 lactation, 100 - 150 day)

7,77
eMissionCow
EMISSIOIICOM

Feed efficiency traits	Mean	SD	Min	Max
Feed intake (kg DM / d)	23.17	3.41	9.76	34.02
Energy balance (MJ NEL / d)	8.06	19.53	-78.39	91.4
Feed efficiency (kg ECM / kg DM)	1.53	0.24	0.41	3.48
Production traits	Mean	SD	Min	Max
Weight (kg)	658.2	68.71	410.1	942.6
Milk yield (kg / d)	36.62	7.13	9.5	61.5
Protein content (%)	3.34	0.25	2.5	4.22
Fat content (%)	3.74	0.53	1.76	5.7

Phenotypic data from 1684 dairy cows on 9 farms (1-10 lactation, 100 - 150 day)

Feed efficiency traits	Mean	SD	Min	Max
Feed intake (kg DM / d)	23.17	3.41	9.76	34.02
Energy balance (MJ NEL / d)	8.06	19.53	-78.39	91.4
Feed efficiency (kg ECM / kg DM)	1.53	0.24	0.41	3.48
Production traits	Mean	SD	Min	Max
Weight (kg)	658.2	68.71	410.1	942.6
Milk yield (kg / d)	36.62	7.13	9.5	61.5
Protein content (%)	3.34	0.25	2.5	4.22
Fat content (%)	3.74	0.53	1.76	5.7

Genotypic data

Imputed 50kSNP data
After QC→ 45,613 SNPs

<u>Dimension reduction (nxn):</u>

G → Genomic relationship matrix (VanRaden, 2008)

UD → Principal component scores (Tussel et al. 2013)

Model training

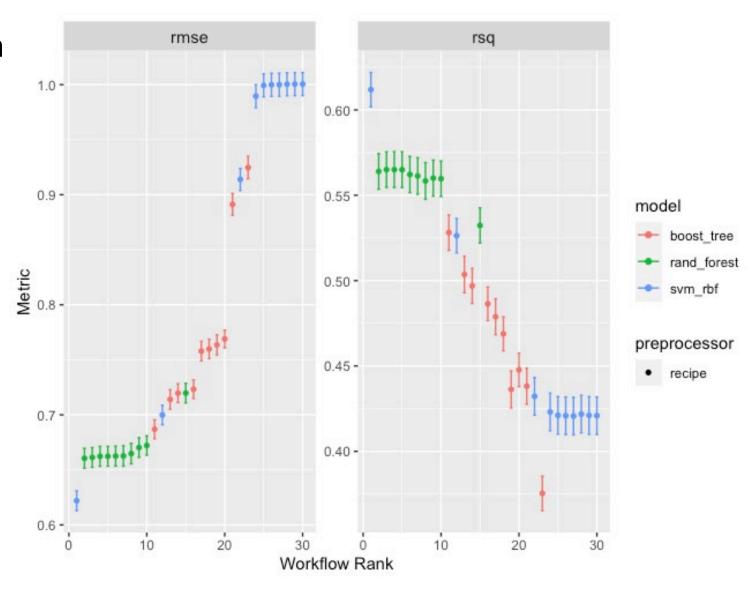
5-fold cross-validation, 10 repetition

Model training and testing

Total data set 80% 20% 1 Training data 3 Test data Hyperparameter optimization • Evaluation of the models

 $(R^2, RMSE)$

2 Trained prediction model


Feature set selection

Feature- set	Weight	Milk yield	Protein content	Fat content	Lactation number	Herd-Year	G	UD
1 (P)	X	X	X	X	X	X		
2 (PG)	X	X	X	X	X	X	X	
3 (PUD)	X	X	X	X	X	X		X

G = genomic relationship matrix (dim: nxn); UD = Principal component scores of marker matrix (dim: nxn)

Hyperparameter opimization

Feature set 1 (P): Feed intake

Prediction of feed intake (Test data):

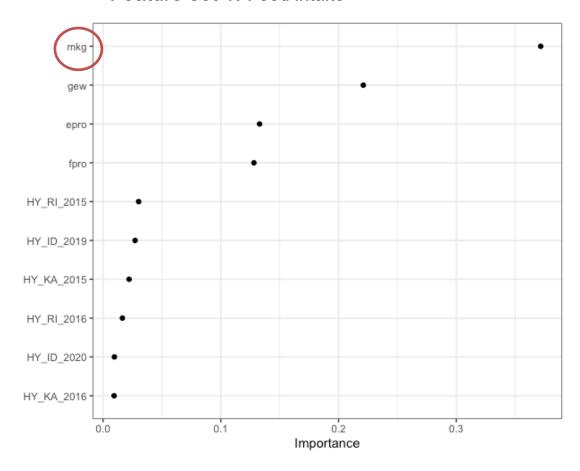
	RF		5	SVM		XGBoost	
Feed intake	R ²	RMSE	R ²	RMSE	R ²	RMSE	
Feature set 1 (P)	0.48	0.70	0.60	0.62	0.46	0.71	
Feature set 2 (PG)	0.38	0.72	0.09	0.90	0.43	0.69	
Feature set 3 (PUD)	0.35	0.74	0.36	0.91	0.41	0.70	

RF = Random Forest; SVM = Support Vector Machine; XGBoost = Extreme Gradient Boosting

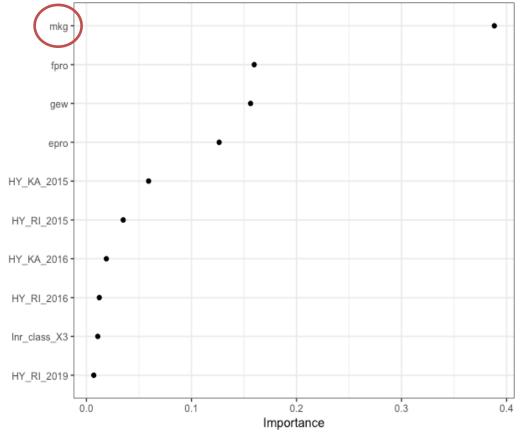
Prediction of energy balance (Test data):

	R	RF		SVM	XGBoost	
Energy balance	R ²	RMSE	R ²	RMSE	R ²	RMSE
Feature set 1 (P)	0.40	0.79	0.45	0.75	0.28	0.85
Feature set 2 (PG)	0.30	0.92	0.08	1.06	0.33	0.89
Feature set 3 (PUD)	0.27	0.93	0.17	1.08	0.25	0.94

RF = Random Forest; SVM = Support Vector Machine; XGBoost = Extreme Gradient Boosting


Prediction of feed efficiency (Test data):

	R	₽ F	SVM		X	GBoost
Feed efficiency	R ²	RMSE	R ²	RMSE	R ²	RMSE
Feature set 1 (P)	0.49	0.80	0.55	0.74	0.42	0.83
Feature set 2 (PG)	0.45	0.87	0.06	1.20	0.44	0.90
Feature set 3 (PUD)	0.43	0.89	0.3	1.13	0.43	0.90


RF = Random Forest; SVM = Support Vector Machine; XGBoost = Extreme Gradient Boosting

XGBoost Feature Importance

Feature set 1: Feed intake

Feature set 1: Feed efficiency

Conclusions

- General suitability of production data for prediction due to their availability on the farms (performance test + weight)
- Moderate to moderately high prediction accuracy of the models
- No improvement of predictions by using genotype information (G, UD)
- Varying variable import scores for the features in different models
- Particularly high information gain for the prediction of all three traits by milk yield
- Next steps:
 - Models for further lactation stages or weeks
 - Simple models with SNP markers (preselection?)

Thank you for your attention!

