

Resilience indicator phenotypes based on daily milk yield in Nordic Red cows

Kavlak A. T.¹, Negussie E.², Lidauer M.H.², Pastell, M.¹

²Natural Resources Institute Finland (Luke), Tietotie 4, 31600 Jokioinen, Finland

¹Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790 Helsinki, Finland

BACKGROUND

- Resilience is the ability of an animal to remain largely unaffected by disruptions or to quickly return to its normal state after experiencing a disturbance.
- Resilience cannot be directly measured but can be utilized to assess resilience.

Research Goals:

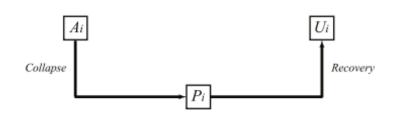
- Develop indicators of resilience by analyzing the dynamics of milk yield over lactation using data from milking robots available in Finland.
- ➤ Compare resilience phenotypes to evaluate their correlation and validate these phenotypes.
- ➤ Understand the genetics behind resilience phenotypes and their associations with fertility and energy status as well as health related traits.

Materials&Methods

- \checkmark Data from 52 dairy cows, spanning 2 to 449 days in milk (310 ± 43), at Luke Maaninka research farm in Finland were used to evaluate the methods.
- ✓ Plans to extend the comparison to a larger dataset of over 70,000 cows (> 107 million per-visit records) to confirm the results.
- ✓ The study will also focus on identifying correlated or redundant variables to refine the phenotypes for more precise analysis.
- ✓ Several methods to detect and characterize disturbances/perturbations have been developed such as:
 - Simple statistics: variance of curve
 - Time series statistics (e.g., smoothing)
 - More theoretical: idealized curve fitting
- ✓ The perturbed lactation model (**PLM**) and differential smoothing (**DS**) methods were implemented to detect and characterize disturbances in the lactation curves using R software.

Table 1List of potential variables to describe and quantify animal resilience. These variables can be adapted for any species.

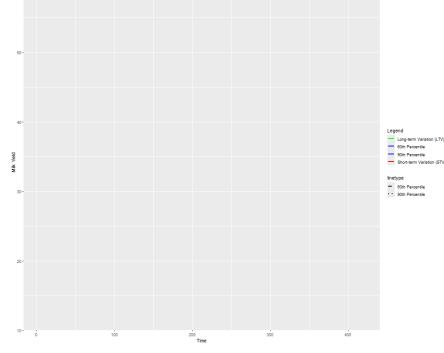
Item	Definition	Examples
Magnitude of	Maximum of the difference between the theoretical trajectory of performance and the	(Codrea et al., 2011)
perturbation	actual perturbed performance	Dairy cows
Time of recovery	The time between the minimum value of performance reached and the time of complete	(Sadoul et al., 2015)
_	recovery (return to the theoretical trajectory).	Rainbow trout
Surface	The area between the theoretical trajectory and the actual performance during the	(Revilla et al., 2019)
	perturbation interval	Piglet
Intensity	 Speed of the decrease during the collapse phase 	(Friggens et al., 2016; Macé et al., 2020; Ben
	 speed of the increase during the recovery phase 	Abdelkrim et al., 2021a)
		Meat sheep, dairy goats, dairy cows
Other dynamic indicators	 Negative residuals based on the estimation of an expected curve of performance 	(Adriaens et al., 2020)
of resilience	Number of days with negative residuals	(Scheffer et al., 2018) (animals and humans)
	Variance/natural logarithm transformed variance	(Poppe et al., 2020) dairy cows
	Temporal auto-correlation/lag-1 auto-correlation	(Berghof et al., 2019b) laying hens
	 Skewness 	
	 Cross-correlation (between elements of the system) 	

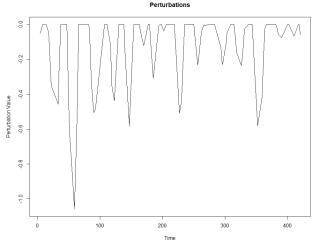

Perturbed Lactation Model (PLM)

- The model is called a perturbed lactation model (**PLM**) with an explicit representation of perturbations.
- A theoretically undisturbed lactation curve (expected lactation curve) was predicted to enable the characterization of the lactation potential of each cow in the absence of environment perturbations (Ben Abdelkrim et al., 2021a)

20 - 100 200 300 400

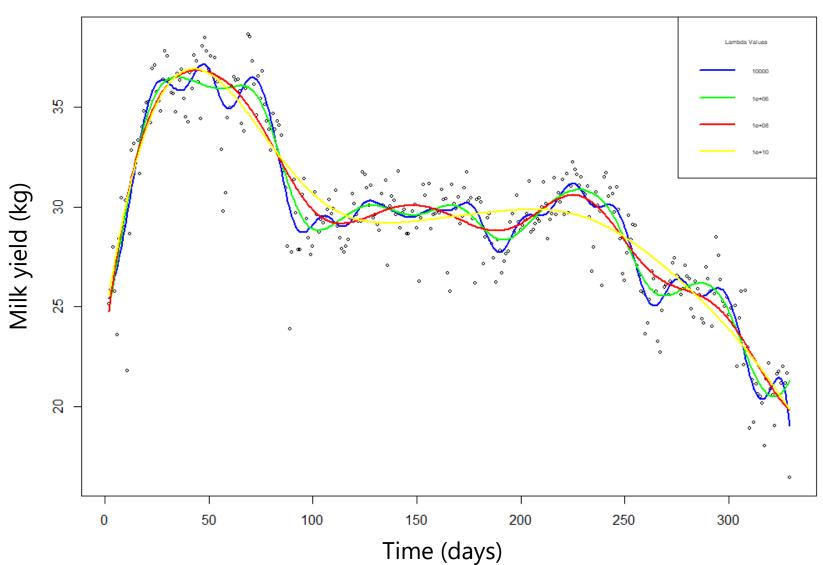
The model combines two components:


- i) The **unperturbed lactation model** that describes a theoretical lactation curve (Wood, 1967), is assumed to reflect female production potential.
- ii) The **perturbation model** describes all the deviations from the unperturbed lactation model with four parameters: starting date, intensity, and shape (collapse and recovery).



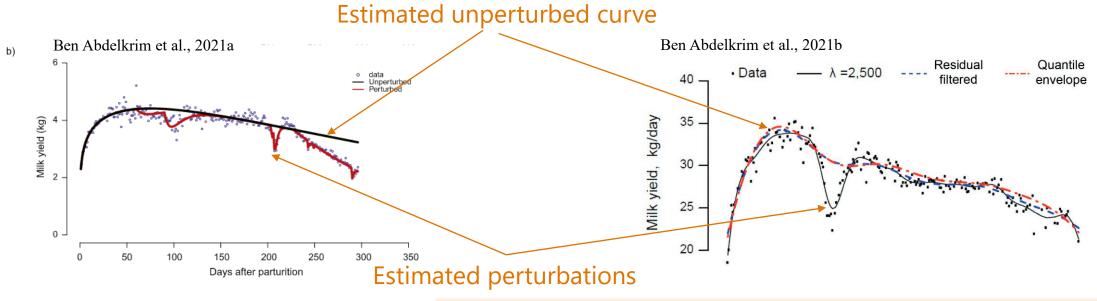
Differential Smoothing (DS)

- The data processing and statistical analyses were done by using R and the smoothing approach described by Ramsay and Silverman (2005) was used (package "fda": Ramsay et al., 2018).
- The λ (roughness penalty) parameter controls the relative emphasis given to goodness of fit versus smoothness.
- The study relies on the study of Codrea et al. (2011) and Abdelkrim et al. (2021b).
- The difference between longer-term phenotypic potential performance (LTV) and short-term variations (STV) provides different measures of perturbations.



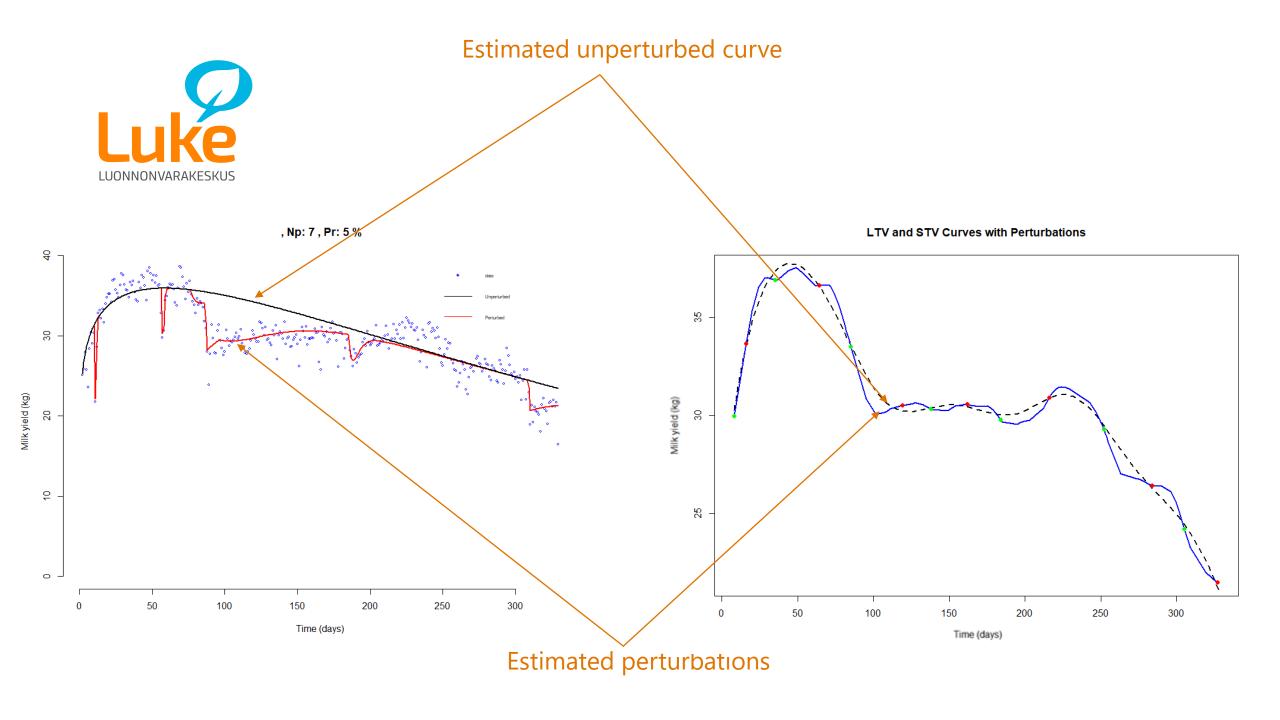
λ - roughness penalty

 $\boldsymbol{\lambda}$ - roughness penalty


Different methods, same concept

Perturbed lactation model (PLM):

- Theoretical wood curve
- Compartment model for collapses


Differential smoothing (DS):

• Difference between long term and short term curve (or heavy and light averaging)

Table Abbreviations and variables selected to define a perturbation			
DS	PLM		
STV: Short-term variations curve	N: Mean of the total number of perturbations		
LTV: Long-term phenotypic potential performance curve	tp: Starting time		
AUC: Areas under the curve of the difference between the STV and LTV curves	k ₀ : Intensity Perturbation		
AUC_{LD} : Estimation of loss per day (AUC/ Δ T)	k ₁ : Collapse speed parameters		
ΔT: Duration of deviation detected	k ₂ : Recovery speed		
AUC _{LD} : Collapse phase time by deviation	a		
T _{col} : Recovery phase time by deviation	b Wood parameters		
T _{rec} : Maximum performance loss during deviation	c		
V _{min} : Minimum value recorded during the deviation	Loss: Milk yield loss.		

OVERVIEW

- •Extract biological knowledge from perturbations using tailored methods.
- •Critical for gaining significant insights.
- •Filter out irrelevant noise and optimize data smoothing for clearer results.
- •Effectively merge diverse data types.
- •Ensure result accuracy.

Thank you for your attention!

Alper Tuna Kavlak
Postdoctoral Researcher
Digital Technologies in Agriculture
Production systems