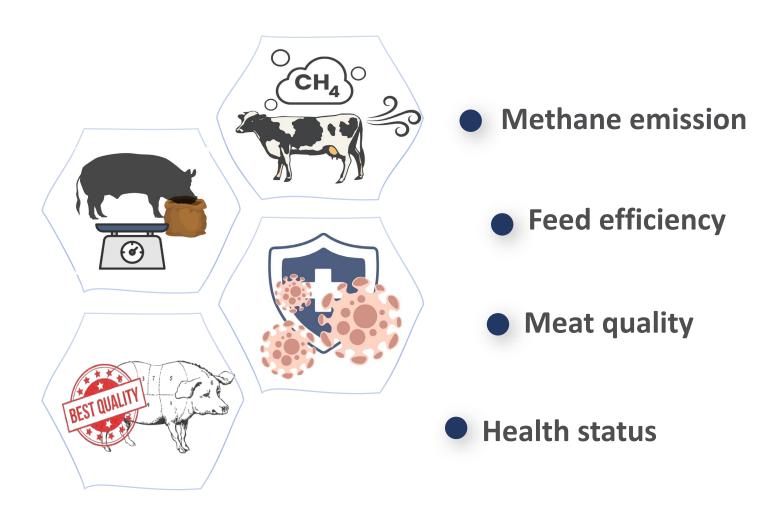


Machine learning approaches for classifying the Iberian pig strains based on microbiome

L. Azouggagh¹, C. Casto-Rebollo¹, L. Varona², J. Casellas³, S. Negro⁴, M. Martínez-Álvaro¹ y N. Ibáñez-Escriche¹



¹ Instituto de Ciencia y Tecnología Animal , Universitat Politécnica de Valencia, Valencia, España,
 ² Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza, Zaragoza, España,
 ³ Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra,
 Barcelona, España, ⁴ Inga Food, 06200, Almendralejo, España.

Introduction

- Growing interest in the last decade in studying the Microbiome
- Microbiota composition regulates important phenotypic traits...

Introduction: Microbiota drivers

- Main drivers of microbiota composition: Environment
 - Diet
 - Housing and farm management
 - Age
 - Treatment/Antibiotics
 - Stressors
- Vertical transmission : physical contact between newborns and mothers (delivery)
- ... And also **host genetics**, an emerging factor of interest

Which microbes colonize within the host + abundance

Introduction: The Iberian pig

- Breed of high economical interest
- High-quality meat: oriented to the production of cured ham (some of the most prized in the world)
- ↑Intra-muscular fat, ↑Oleic acid content
- Five officially recognized Iberian pig strains: Entrepelado, Retinto, Torbiscal, Lampiño, and Manchado de Jabugo
- All of them exhibit substantial variability in productive features (meat quality, carcass traits, etc.).

Introduction: Iberian strains diversity

Phenotypic

Meat Science

Volume 81, Issue 4, April 2009, Pages 573-579

Meat quality of tenderloin from Iberian pigs as affected by breed strain and crossbreeding

M. Juárez 🙎 🖂 , I. Clemente, O. Polvillo, A. Molina

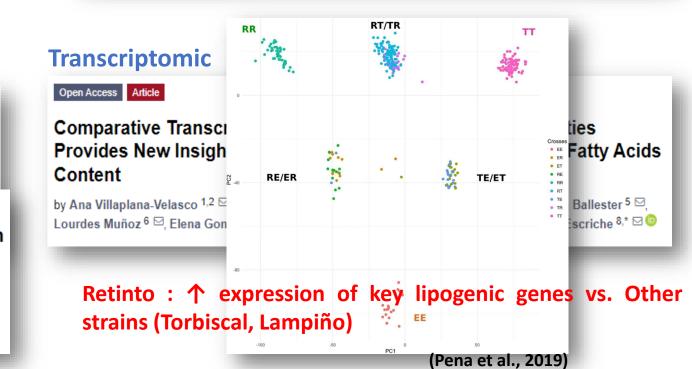
Genomic

Article | Open access | Published: 14 February 2019

Five genomic regions have a major impact on fat composition in Iberian pigs

Additive and Dominance Genomic Analysis for Litter Size in Purebred and Crossbred Iberian Pigs

by Houssemeddine Srihi 1 ≥ 0, José Luis Noguera 2 ≥, Victoria Topayan 3 ≥, Melani Martín de Hijas ⁴ □, Noelia Ibañez-Escriche ³ □ 0, Joaquim Casellas ⁴ □. Marta Vázquez-Gómez 4 ☑. María Martínez-Castillero 1 ☑ ⑥. Juan Pablo Rosas 5 ☑ and Luis Varona 1,*

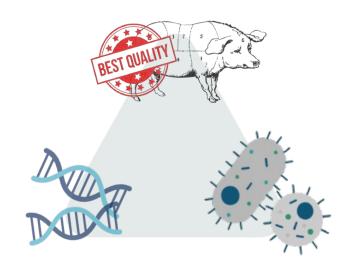

©

Genetic

Genetic structure of the Iberian pig breed using microstallitas

Intra-breed genetic diversity characterization of AMMthe Iberian pig

> I. Clemente*, A. Membrillo*, P.J. Azor*, O. Polvillo**, M. Juárez**, E. Santos*, A.M. Jiménez*, E. Diéguez***, A. Molina*



Introduction: Iberian strains diversity

- Can we see this diversity at the microbiome level of the Iberian pigs?
 - Genetic diversity plays an important role in phenotypes of interest in Iberian pigs (meat quality)
 - Association between microbiota and those phenotypes in pigs

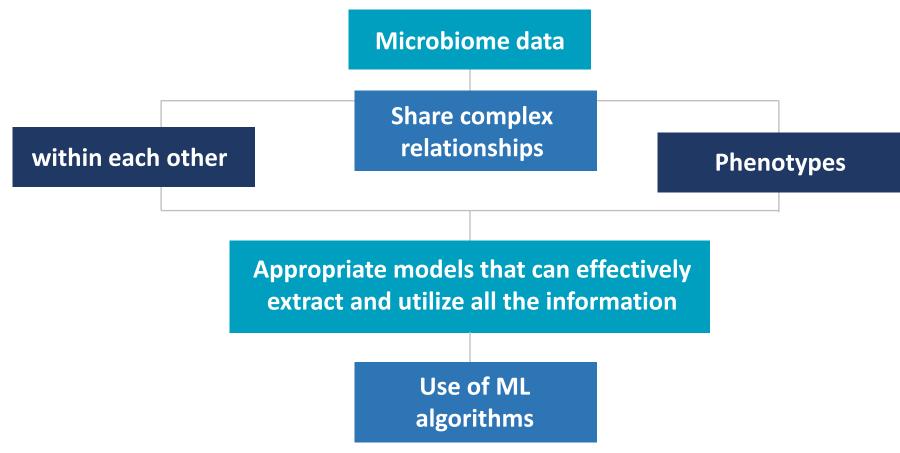
➤ Becomes crucial to explore this link further in the context of Iberian pigs..

Introduction: Iberian strains diversity

- Maternal effect: Litter size (↑ in Entrepelado), palmitoleic acid (C16:1)
- Heterosis effect: Intramuscular fat (↑ in Entrepelado × Retinto cross), litter size
- Imprinting Effect: Reproductive traits (Entrepelado × Retinto cross)

Genetic parameters and direct, maternal and heterosis effects on litter size in a diallel cross among three commercial varieties of Iberian pig

J. L. Noguera¹, N. Ibáñez-Escriche², J. Cas


Genetic parameters and crossbreeding effects of fat deposition and fatty acid profiles in Iberian pig lines¹

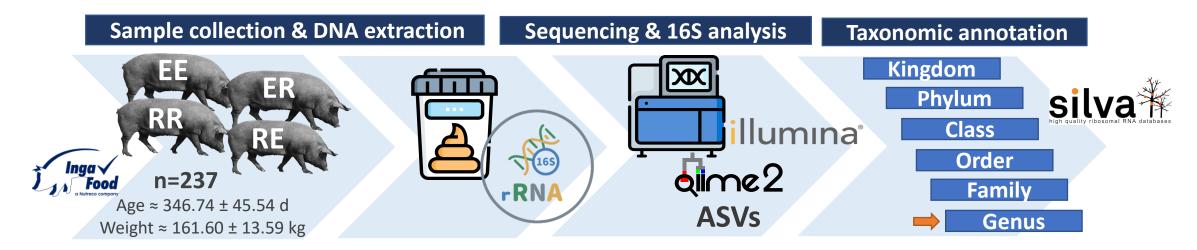
N. Ibáñez-Escriche,*2 E. Magallón,† E. Go Genomic Information: An Example with Two Iberian Varieties

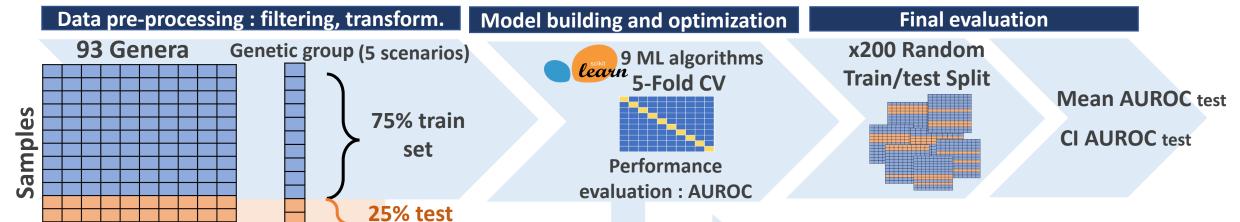
by Houssemeddine Srihi ¹ ¹ ¹ David López-Carbonell ¹ ¹ Noelia Ibáñez-Escriche ² ¹ Joaquim Casellas ³ ¹ Pilar Hernández ² ¹ Sara Negro ⁴ and Luis Varona ^{1,*} ¹ ¹

Introduction : Microbiome data peculiarities

➤ Choice of the most effective one? Depends on the specific use case
 → Testing multiple models is advisable

Objetives


- Explore the gut microbiota of Iberian pigs of two different strains (EE;Entrepelado and RR;Retinto) and their reciprocal crosses:
 - > Evaluating the classification performance of a set of widely used ML models based on microbial abundances
- Identify the key taxa relevant for distinguishing the genetic backgrounds of these Iberian pigs.


Clr-transformed

genus table

set

Important features (RandomForest Feature selection)

• Five scenarios were explored:

Four genetic groups

Purebred

Maternal

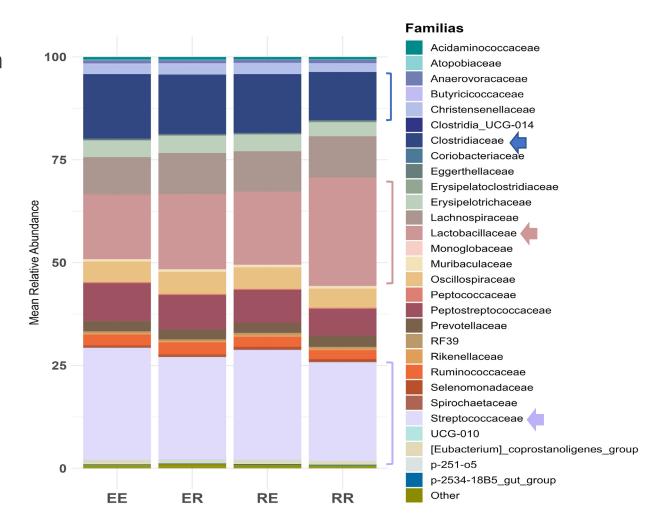
Paternal

Heterosis

- ML algorithms used
 - PLS-Discriminant Analysis (PLS-DA)
 - Support vector Machine (SVM)
 - Tree-based algorithms: Decision tree (DT), Random forest (RF), Adaboost (AB), XGBoost (XGB), Catboost (CB)
 - Probabilistic algorithms: Gaussian Naïve Bayes (GNB) and Logistic regression (LR)

• Identification of taxa with relevant differential abundance (DA) per scenario, using a Bayesian linear model :

Abundance(clr) = μ + Effect of the scenario related group + e


 Genera with relevant DA: a minimum mean difference between groups 0.50 SD and the probability of the (|difference| > 0) > 0.95

Taxonomic results

Relative abundances

- 11,960 ASVs, 12 Phyla, 51 families, 130 genera (prevalence filter 75%: 93 genera)
- Predominance of:
 - 2 Phyla (98.7%):
 - Firmicutes (94.6%)
 - Bacteroidetes (4.1%)
 - 3 genera (58.9%)
 - Streptococcus (25.7%)
 - Lactobacillus (19.5%)
 - Clostridium sensu stricto 1 (13.8%)

Microbial diversity

Alpha diversity

- Shannon, Pielou & Chao1
- Pairwise Kruskal-Wallis test:
 - ∄ differences between the Four genetic groups
 - ∃ differences between Batches and Age groups

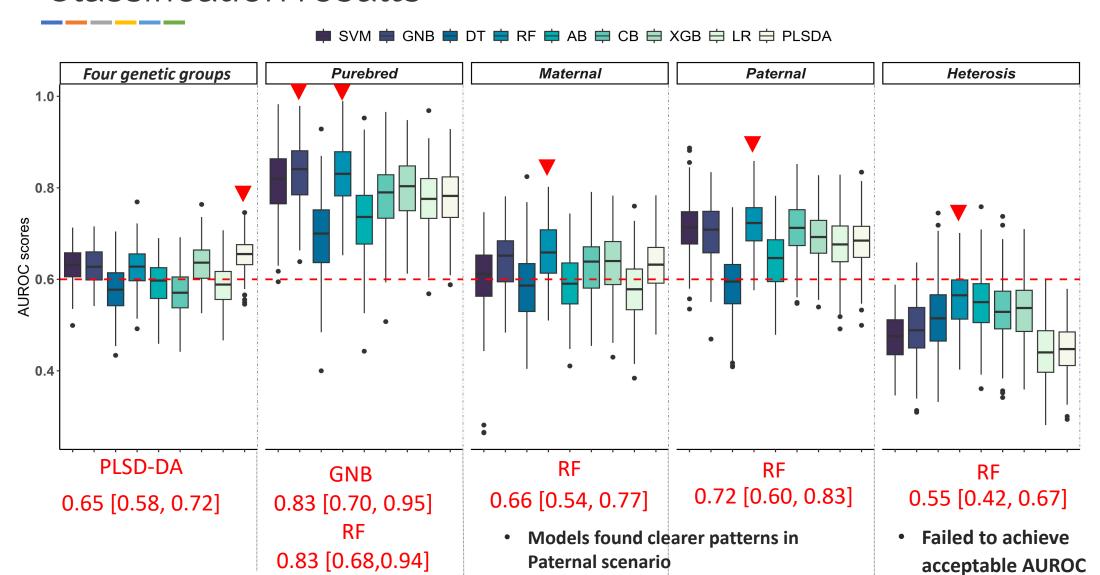
Beta diversity

- Aitchison distance matrix
- PERMANOVA; ∃ relevant compositional divergence among:
 - Four genetic groups
 - Batches
 - Age groups

- > Similar diversity of the microbial community within the four genetic groups, but overall bacterial abundance profile was different among them
- > Adjusting the genera abundances for the confounding effects of age and batch

Classification results

- Beta-diversity analysis → differences were also evident at the microbiota level
- First classification task : Four genetic groups
 - Best performing model: **PLS-DA** AUROC of 0.65 (IC del 95% [0.58, 0.72])
 - Confusion matrix of the test sets over 200 iterations


	Predicted classification							
Actual classification	classes	EE	ER	RE	RR	Total		
	EE	15	0	0	4	19		
	ER	6	1	0	5	12		
	RE	5	1	0	7	13		
	RR	3	1	0	12	16		

Classification results

Less samples

Good performance

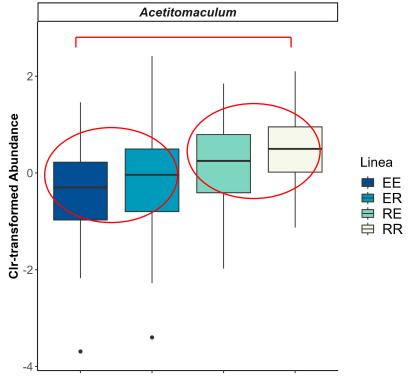
Reinforces earlier findings related to

the presence of genomic imprinting

Unlike previously seen patterns (genotyping data)

Classification results post FS

- RF allows feature selection (FS) based on the importance scores of the genera
- Classification using newly selected genera -> increase in performance


Scenario	Mean increase FS (%)	Best performance no FS	Best model no FS	Best performance FS	Best model FS
Four gen. groups	6.30%	0.65 ± 0.04	PLS-DA	0.70 ± 0.04	RF
Purebred	3.30%	0.83 ± 0.07	GNB-RF	0.88 ± 0.05	GNB
Maternal	6%	0.66 ± 0.06	RF	0.71 ± 0.06	RF
Paternal	4.90%	0.72 ± 0.05	RF	0.76 ± 0.05	RF
Heterosis	13.90%	0.55 ± 0.06	RF	0.63 ± 0.07	RF

> 7 initial classification performance > \(\)performance gain observed post-FS

Feature selection vs. Differential abundance

- FS → address classifiaction aspect + Identify most important general
- Several were consistent between scenarios
- Associated to SCFA production and lipid metabolism
- Found to be DA between groups using Bayesian linear model

Produce SCFA + improve carcass traits and meat quality in pigs

Higher abundance in RR vs. EE animals

→ Aligns with RR higher quality meat

Summary

- The genetic background is an important factor influencing the microbiota profile of Iberian pigs
- RF and GNB reached the best classification performance, especially in the Purebred and Paternal scenarios and the FS improved the results.
- The genera that exhibited DA between different genetic groups were also identified by the RF-based FS method as important features
- Several important genera were linked to SCFA production and lipid metabolism >> the differences in the microbiota composition could be contributing to differences in meat quality traits between Iberian pigs

Thanks for your attention!

