

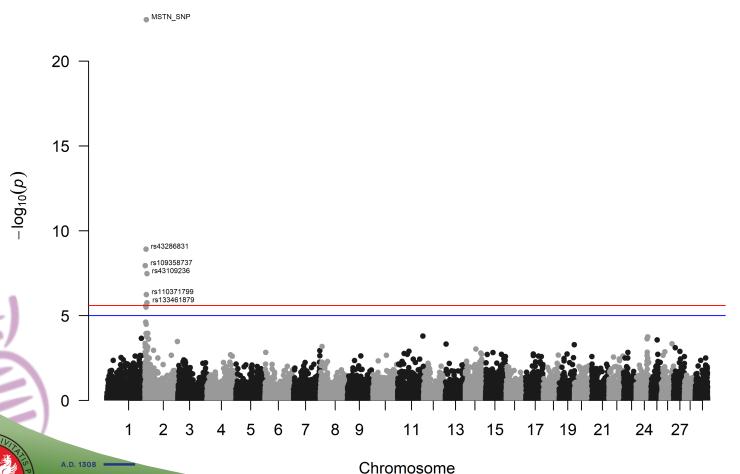
Colombi D.^{1*}, Perini F.², Polifroni V.¹, Sbarra F.³, Quaglia A.³, Lasagna E.¹

¹Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy
²Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020 Legnaro (PD), Italy
³National Association of Italian Beef-Cattle Breeders (ANABIC), 06132 San Martino in Colle (PG), Italy

*Corresponding author: daniele.colombi@dottorandi.unipg.it

Normal

Hypertrophic - heterozygous


Hypertrophic - homozygous

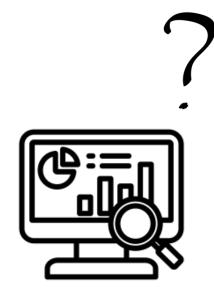
Genome-wide association study for muscularity in Marchigiana breed

rs	BTA	bp	A1	MAF	β	SE(β)	P-value	Candidate genes
MSTN_SNP	2	6283727	т	0.132	0.9037	0.0887	3.64E-23	MSTN
rs43286831	2	4636218	Α	0.296	0.3858	0.0628	1.22E-09	AMMECR1L, SFT2D3, LIMS2, MYO7B, SAP130, UGGT1, HS6ST1
rs109358737	2	1283089	G	0.235	0.4146	0.0720	1.14E-08	TUBGCP5, IMP4, PTPN18, AMER3, ARHGEF4, CYFIP1, NIPA1, NIPA2, HERC2
rs43109236	2	8826383	Α	0.227	0.3979	0.0714	3.37E-08	TFPI, CALCRL
rs110371799	2	5909758	G	0.450	0.2904	0.0577	5.73E-07	MFSD6, NAB1, INPP1, NEMP2, HIBCH, C2H2orf88, MSTN
rs133461879	2	8634840	Α	0.280	0.3262	0.0678	1.75E-06	TFPI, CALCRL

Colombi et al. 2024. Population structure and identification of genomic regions associated with productive traits in five Italian beef cattle breeds. Scientific Reports. https://doi.org/10.1038/s41598-024-59269-z

MSTN mutation in Marchigiana breed

- ✓ Increased muscularity
- ✓ Higher dressing percentage
- ✓ Lower content of fat
 - Homozygous mutated genotype is unwanted
 - The positive or negative effects of the mutation on growth traits are still debated
 - Evidences in mice that MSTN deletion leads to impairment of testicular development


Also heterozygous animals are often looked upon with suspicion by breeders

Research questions

- Are Marchigiana bulls carrying this mutation (i.e., heterozygous GT) different from the individuals homozygous for the wild allele in terms of productive or reproductive traits?
- Does it positively or negatively affect animal's performances?

Is the heterozygous genotype favourable?

Phenotypic data

Productive traits

- 1. Morphological score (MOR, score)
- 2. Bull selection index (IST)
- 3. Average daily gain index (ADG_IDX)
- 4. Muscularity index (MUS_IDX)
- 5. Average daily gain before performance test (ADG_PRE, kg/d)
- 6. Average daily gain during performance test (ADG_TEST, kg/d)
- **7.** Muscularity (MUS, score)
- 8. Live weight at one year (WEI, kg)

Reproductive traits

Testicular morphometric traits

- 9. Scrotal circumference (SC, cm)
- **10. Right testicle diameter** (RTD, cm)
- 11. Right testicle length (RTL, cm)

Sperm quality traits

- **12. Sperm volume** (SV, ml)
- **13. Sperm concentration** (Sconc, mln of spermatozoa/ml)
- 14. Abnormal spermatozoa (ABN, %)
- 15. Total motility (SM, %)

Genotypic data

- RFLP-PCR
- GeneSeek Genomic Profiler Bovine LDv4 33K chip

780 GG 294 GT 458 GG 166 GT (SC) 451 GG 161 GT (RTD, RTL)

223 GG 75 GT

Statistical analysis

ANOVA

(ADG_PRE, WEI, SC, RTD, RTL)

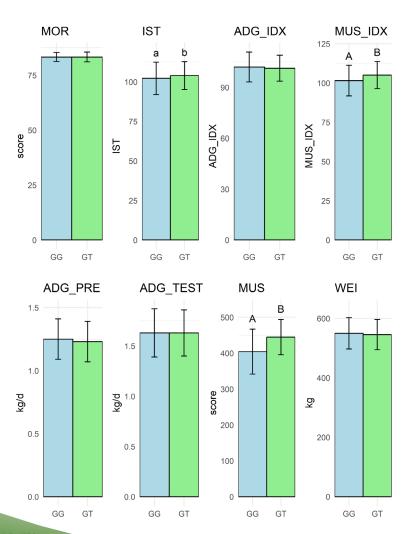
$$Y_{ijkl} = \mu + \alpha_i + \beta_j + \gamma_k + \delta_l + \varepsilon_{ijkl}$$

 μ = mean

 α = effect of the genotype *i* (GG or GT)

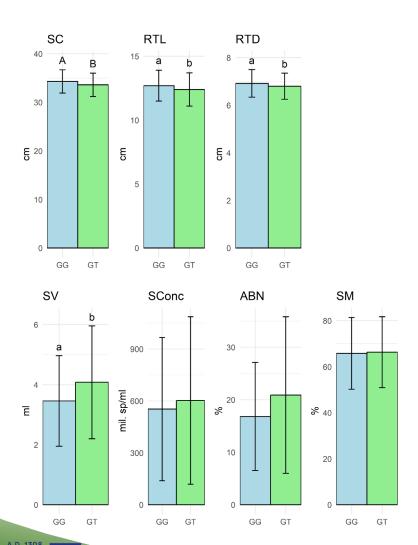
 β = effect of year of birth j

 γ = effect of month of birth k


 δ = effect of province of birth l (productive traits) or the effect of weeks of life when the testicular morphometry was evaluated (testicular morphometric traits)

 ε = random effect.

- Mann-Whitney U
- The threshold of significance was set according to the Bonferroni method to 0.0033



Results

Productive traits

_Trait	μ (σ) GG	μ (σ) GT	Nominal P-value
Morphological score (score)	83.31 (2.06)	83.31 (2.25)	0.98
Bull selection index	102.23 (10.23)	103.98 (8.84)	0.0034
Average daily gain index	101.97 (8.80)	101.25 (7.65)	0.42
Muscularity index	101.55 (9.72)	105.05 (8.66)	1.95e-07
Average daily gain before performance test (kg/d)	1.25 (0.16)	1.23 (0.16)	0.19
Average daily gain during performance test (kg/d)	1.63 (0.24)	1.63 (0.23)	0.51
Muscularity (score)	404.35 (62.31)	444.56 (49.04)	5.42e-24
Weight at one year old (kg)	549.41 (52.59)	545.25 (50.87)	0.27

Results

Reproductive traits

Trait	μ (σ) GG	μ (σ) GT	Nominal P-value						
Testicular morphometry traits									
Scrotal circumference (cm)	34.3 (2.4)	33.6 (2.4)	9.12e-05						
Right testicle length (cm)	12.7 (1.2)	12.4 (1.2)	0.0093						
Right testicle diameter (cm)	6.92 (0.58)	6.80 (0.55)	0.0136						
Sperm quality traits									
Sperm volume (ml)	3.46 (1.51)	4.08 (1.88)	0.01						
Sperm concentration (mil. sp/ml)	552.5 (413.4)	602.2 (483.2)	0.76						
Abnormal spermatozoa (%)	16.8 (10.3)	20.9 (14.9)	0.83						
Sperm motility (%)	65.8 (15.6)	66.3 (15.4)	0.07						

Conclusions

Muscularity related traits are strongly increased by *MSTN* mutation in heterozygous Marchigiana bulls.

Other productive traits and reproductive features were not negatively affected by such genotype in a relevant manner.

Heterozygous Marchigiana bulls can be a valuable resource for genetic selection and improvement with regards to muscularity.

Thank you for your attention

Acknowledgements

This work was supported by the projects: "Italian Biodiversity Environment Efficiency Fitness"—I-BEEF 1 and 2—2014–2020 and 2020–2023. PSRN: Support for the conservation, use and sustainable development of genetic resources in agriculture. Sub-measure 10.2.