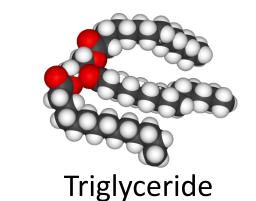
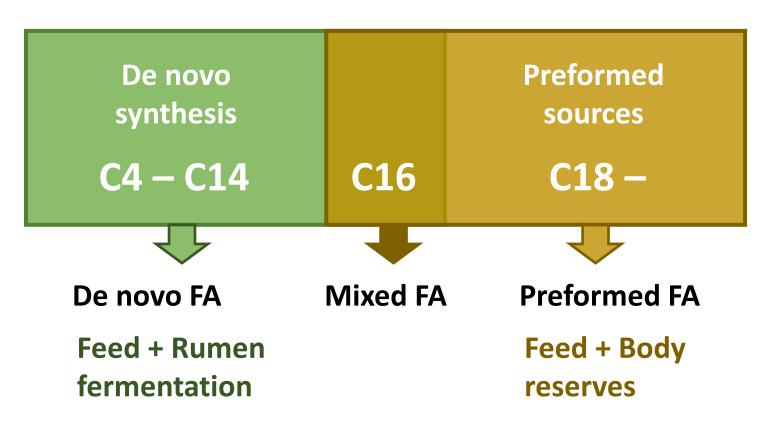

Genotype by management-system interaction on origin group of milk fatty acids for Holsteins

Masuda, Y.¹, Yamamoto, N.¹, Lourenco, D. A. L.², Tsuruta, S.², and Misztal, I.²


1 Rakuno Gakuen University, Hokkaido, Japan 2 University of Georgia, GA, USA

The 75th EAAP 2024 Annual Meeting, Florence, Italy September 3rd, 2024

Source of milk fatty acid (FA)


Milk fat and rumen health

= Glycerol + 3 FA chains

MilkoScan FT1 (FOSS)
FA content predicted by FT-IR

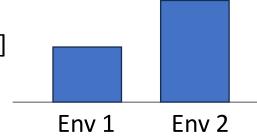
Useful tool to monitor cow/rumen health = indicator of negative energy balance

Variety of management systems

Tie Stall-based (Up to 60%) Avg. > 8000kg

Free Stall-based (Up to 30%) Avg. > 9000kg

Pasture-based (Up to 10%) Avg. < 8000kg


Different nutrition management

= Possible difference in milk FA by management ("environment")

Motivation of this study

Models regarding management (environmental) effect on milk FA

Difference in average [modeled as fixed effect]

Genotype by Env. interaction

[modeled as multiple-trait model]

Breeding value of animal 1
Breeding value of animal 2

Env 1

Env 2

Objectives

- To estimate genetic correlations among three management systems, i.e., tie stall, free stall, and pasturebased systems
- To perform GWAS to detect significant chromosome regions unique to each management system
- * Results shown in the abstract + update

Data

- Test-day DHI records
 - Holstein cows in Hokkaido
 From April 2021 to October 2022
 - 1st and 2nd lactation cows
 - DIM from 6 to 125
- Pedigree and genomic information
 - Up to 120,000 genotypes
 - >400K pedigree animals

	First Lactation	Second Lactation
No. of herds	3,027	3,029
No. of cows	211,462	100,865
No. of test-day records	1,448,373	1,012,756
No. of pedigree animals	402,418	309,539

Milk FA profiles

DnF(%): Test-day de novo FA % of FA yield

$$DnF(\%) = \frac{De \text{ novo FA yield}}{Fat \text{ yield} \times 0.95^*} \times 100$$

PrF(%): Test-day preformed FA % of FA yield

$$DnF(\%) = \frac{Preformed FA yield}{Fat yield \times 0.95^*} \times 100$$

Milk yield Fat yield De novo FA Preformed FA Mixed FA * Glycerol (5%)

^{*} Assuming 5% for glycerol in the total milk fat yield (triglyceride)

Analysis by lactation stage

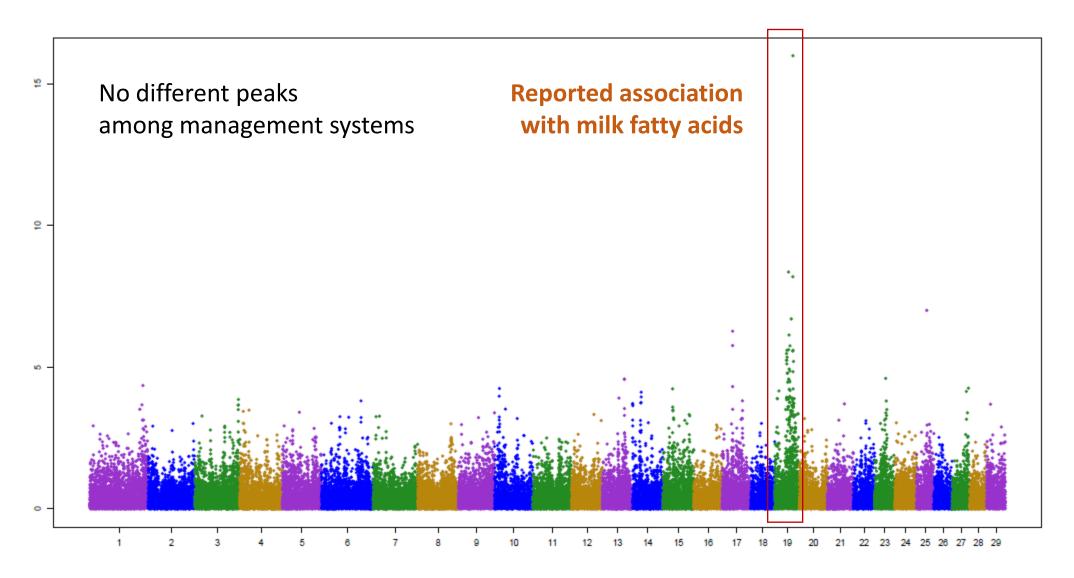
- Data division by lactation stage (30-day interval)
 - Stage 1: DIM 6 − 35
 - Stage 2: DIM 36 65
 - Stage 3: DIM 66 95
 - Stage 4: DIM 96 125
- Management system as different trait
 - Tie-stall, Free-stall, Pasture-based systems

Variance components

- 3-"trait" model for each FA by stage to estimate genetic correlations
- BLUPF90+ (AI REML)
- Genome-wide association study with all available genotypes
 - Single-step GWAS with APY using blup90iod3 + accGS2 + postGSf90 (nonlinearA)
 - Only for stages with genetic correlations < 0.99

Genetic correlations (1st lactation)

DnF%	Tie-Free	Tie-Pasture	Free-Pasture
Stage 1	>0.99	>0.99	>0.99
Stage 2	>0.99	>0.99	>0.99
Stage 3	>0.99	>0.99	>0.99
Stage 4	>0.99	>0.99	>0.99
PrF%	Tie-Free	Tie-Pasture	Free-Pasture
Stage 1	>0.99	>0.99	>0.99
Stage 1 Stage 2	>0.99 >0.99	>0.99 >0.99	>0.99 >0.99
			1111


No GxE interaction in the first lactation

Genetic correlations (2nd lactation)

DnF%	Tie-Free	Tie-Pasture	Free-Pasture
Stage 1	>0.99	>0.99	>0.99
Stage 2	>0.99	>0.99	>0.99
Stage 3	>0.99	>0.99	>0.99
Stage 4	0.99	0.99	0.96
PrF%	Tie-Free	Tie-Pasture	Free-Pasture
PrF% Stage 1	Tie-Free >0.99	Tie-Pasture >0.99	Free-Pasture >0.99
Stage 1	>0.99	>0.99	>0.99

Almost no GxE interaction in the 2nd lactation

DnF%: Single-trait GWAS (no management systems) at stage 4 in the 2nd lactation

Results update

- More phenotypic data
 - Previous: Apr. 2021 Oct. 2022
 - Updated: Apr. 2021 Oct. 2023
- Genetic correlations among management systems
- GWAS
 - Without management systems using limited (21,013) genotypes (Regular ssGWAS, No APY)
 - APY GWAS in progress

1st Lactation

DnF%	Tie - Free	Tie - Pasture	Free - Pasture
Stage 1	0.96	0.99	0.97
Stage 2	0.97	0.97	0.89
Stage 3	0.99	0.99	0.99
Stage 4	0.97	0.93	0.87

PrF%	Tie - Free	Tie - Pasture	Free - Pasture
Stage 1	0.99	0.99	0.98
Stage 2	0.99	0.99	0.97
Stage 3	0.99	0.99	0.96
Stage 4	0.98	0.95	0.87

GWAS for DnF% (no GxE, limited genotypes)

		_	Genetic var. Explained (%)		
(Chr	Pos (MB)	Stage 1	Stage 2	QTL (or Association)
	6	85.18 - 89.00	0.20	N/S	SLC4A4 etc. (Milk & fat yield, mastitis etc.)
	19	51.32 – 51.32	0.12	0.18	BAHCC1 (Milk FA content etc.)

Summary

More data required to detect GxE interaction

- Phenotypes from at least 3 yearperiod
- Ideal with at least 2 generations

GxE interaction in milk FA

- Unclear at the very begging of lactation
- Some interaction with pasturebased management on stage 2 or later

Single-step GWAS

- APY-GWAS well with many more genotypes
- APY-GWAS in progress with GxE interaction
- Significant chromosome regions likely different by lactation stage
 Different genetic control on metabolic status by stage

Acknowledgment

- Financial support
 - Japan Racing Association (JRA):
 "Improvement of dairy cow health at the early stage of lactation"
 - KAKENHI 22K05972
 - Genetics Hokkaido
- Data preparation
 - Hokkaido Milk Recording & Testing Association (HMRT)
 - Holstein Cattle Association of Japan (HCAJ)

- Collaborated with
 - Takeshi Yamazaki (NARO-Hokkaido)
 - Akiko Nishiura (NARO-Tsukuba)
 - Hayato Abe, Yuka Nakahori, & Satoshi Nakagawa (HMRT)
 - Koichi Hagiya (Obihiro Univ.)

