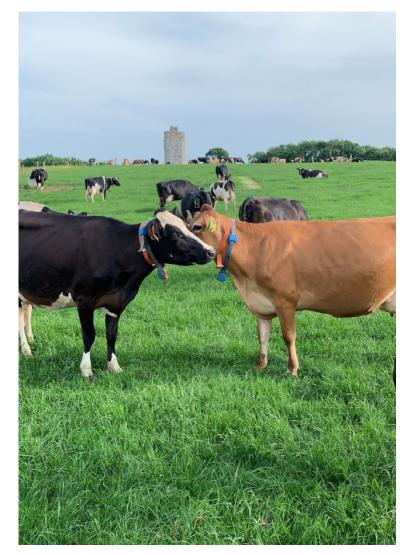


Background



- Annual milk fat concentration has been increasing over time
- However, consistent reduction during late spring/early summer
 - Coincides with peak milk production period
 - Large financial implications
- Severity of the reduction seems to be increasing

Potential Causative Factors

- Stage of lactation typically implicated due to higher milk production
- Investigations suggest that the reduction is independent of stage of lactation/DIM (Carty et al., 2017)
- Nutritional mechanisms;
 - Acetate supply
 - Biohydrogenation theory
 - » Polyunsaturated Fatty Acid Load
 - » Low levels of NDF combined with rapidly digestible carbohydrates
 - » Low rumen pH
- While nutritional strategies can help maintain milk fat concentration,
 often an underlying animal genetic component is at play

Experimental Design

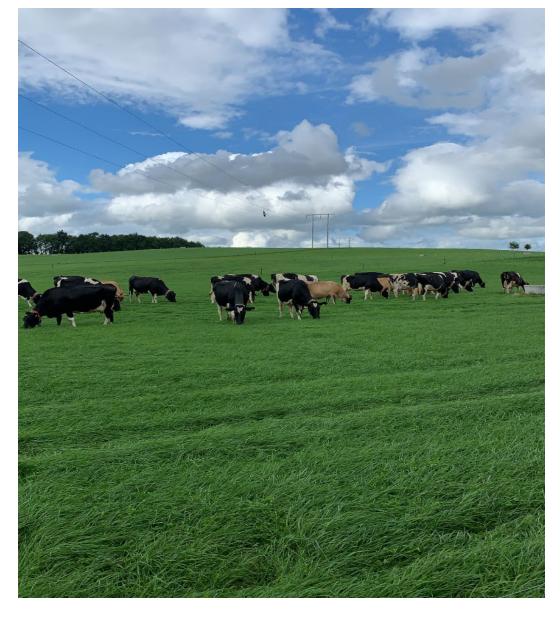
	Holstein-F	Jersey	
Item	Elite	NA	JE
Animal No.	60	60	60
EBI	(225)	(157)	(168)
Sub Index			
Milk	72	48	67
Fertility	103	74	50
Calving	42	31	38
Beef	-15	-15	-52
Maintenance	15	14	52
Health	6	3	5
<u>PTA</u>			
Milk, kg	26	48	-390
Fat, %	0.20	0.11	0.53
Protein, %	0.13	0.08	0.26
Fat, kg	12.3	7.9	13.1
Protein, kg	8.4	6.1	0.9

- Our objective was to investigate the effect of animal genotype during a high risk period for reduced milk fat synthesis
- 45 primiparous and 135 multiparous averaging
 48 ±18 DIM were blocked and randomly assigned
 to 1 of 3 dietary treatment groups

Trial Outline

19 Week Trial Length

2 Week Covariate


Late March – Early April

11 Week Experimental Period

Early April – End June

6 Week Carry Over Period

July – Early August

Materials & Methods

- Daily milk yields
- Weekly milk sampling
- Pre- and post-grazing sward heights
- Pre-grazing sward sampling
- Repeated measures mixed model
 - Fixed effects of parity, week, diet, genotype and their interactions
 - Random effect of cow
 - Repeated effect of week

Yield and Fat Production Results

	GG				
Item	Elite	NA	JE	SEM	<i>P</i> -value
Milk yield, kg d ⁻¹	26.6 ^A	26.8 ^A	21.4 ^B	0.28	<0.01
ECM yield, kg d ⁻¹	31.6 ^A	30.3 ^B	29.2 ^c	0.29	<0.01
Fat, %	4.63 ^B	4.25 ^C	5.72 ^A	0.04	<0.01
De novo, g 100g ⁻¹ of fat	26.0 ^B	25.7 ^B	27.4 ^A	0.13	<0.01
Mixed, g 100g ⁻¹ of fat	32.5 ^B	31.8 ^C	35.4 ^A	0.13	<0.01
Preformed, g 100g ⁻¹ of fat	40.2 ^B	41.2 ^A	36.1 ^C	0.21	<0.01
Fat, kg d ⁻¹	1.22 ^A	1.14 ^B	1.22 ^A	0.01	<0.01

Protein, Lactose and Milk Solids Results

		GG			
Item	Elite	NA	JE	SEM	<i>P</i> -value
Protein, %	3.68 ^B	3.53 ^C	4.13 ^A	0.02	<0.01
Protein, kg d ⁻¹	0.97 ^A	0.94 ^B	0.88 ^C	0.01	<0.01
Lactose, %	4.84 ^C	4.87 ^B	4.90 ^A	0.01	<0.01
Lactose, kg d ⁻¹	1.28 ^A	1.31 ^A	1.05 ^B	0.01	<0.01
Milk solids, kg d ⁻¹	2.19 ^A	2.08 ^B	2.10 ^B	0.02	<0.01

Conclusion

- High EBI HF and JE cows produced higher milk fat concentration and milk fat yield compared with `national average EBI HF
- JE produced milk fat with higher de novo, higher mixed and lower preformed fatty acids when compared with HF
- Animal genotype plays an important role in milk fat production during the high-risk period
- It is important that producers consider animal genetics in combination with nutritional strategies when investigating a milk fat concentration issue

Acknowledgments: This experiment was funded by Teagasc Core Funding and Dairy Research Ireland