

Colostrum yield is heritable and genetically correlated with immunoglobulins concentration in Holstein cows

#2213054

A. Goi¹, M. De Marchi¹, M. Cassandro^{1,2}, R. Finocchiaro², M. Marusi², A. Costa³

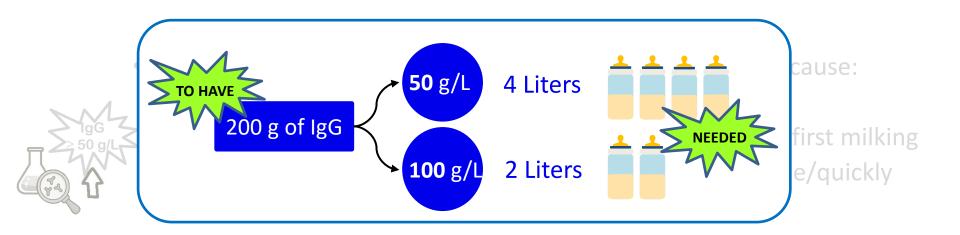


¹Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Legnaro (PD), Italy ²Associazione Nazionale Allevatori della Razza Frisona, Bruna e Jersey Italiana (ANAFIBJ), Cremona (CR), Italy ³Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia (BO), Italy

- Colostrum is the first secretion of the mammary gland after calving
- Provides newborn calves with nutrients and immunoglobulins, fundamental for their survival, health, growth and development

 Administration to newborn calves is of paramount importance for transfer of passive immunity

Its **quality** is conventionally based on the **immunoglobulins G** (IgG) concentration



At least **4 L** of good quality colostrum should be consumed **within 12 h from calving**

• Ideally, an highly concentrated secretion is preferable, because:

- Dairy cows often fail to produce enough colostrum at first milking
 - Sometimes the neonates refuse to consume 4 L in time/quickly

Colostrum: a way to improve calf health

mortality rate long-term effects on performance

Genetic selection for calf health is still under investigation, with first attempts currently ongoing in Canada

(Lynch et al., 2023 https://doi.org/10.3168/jds.2023-23780)

Selection could also focus on **the dam**: Colostrum traits (yield and quality) play a role in calf immunity and may be extremely variable

To improve colostrum yield (CY) and colostrum quality (=IgG concentration)

- ❖ Intermediate optimum for CY
- ❖ high IgG

Is smart genetic selection for both traits meaningful? Feasible?

Objectives

- Evaluate the IgG concentration in cows of different productivity level (CY)
- Estimate the heritability (h²) of CY and its genetic correlation with IgG

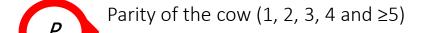
Materials and Methods

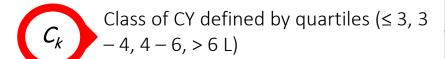
- 2,693 Holstein cows
- 60 farms in North-East Italy
- May 2022 March 2023
- Parity from 1 to 9

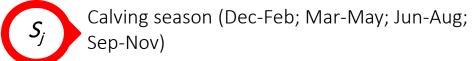
- Colostrum yield at 1st milking (≤ 6 h from calving)
- 120 mL of colostrum for NIRS prediction* of IgG (g/L)
- 1 obs/cow

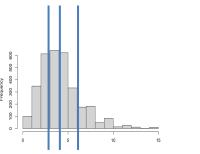
^{*}Franzoi et al. 2022 Food Chem. (R² external validation=0.83)

Materials and Methods


Aim 1. Evaluate the IgG concentration in cows of different productivity level (CY)




ASReml°


Analysis of IgG concentration

$$y_{ijklm} = \mu + P_i + S_j + C_k + (P \times C)_{ik} + (P \times S)_{ij} + h_l + a_m + e_{ijklm}$$

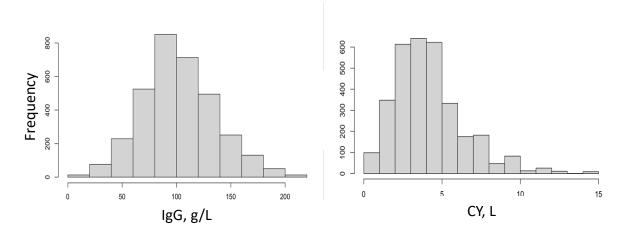


Materials and Methods

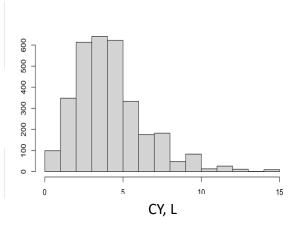
Aim 2. Estimate the heritability (h²) of CY and its genetic correlation with IgG

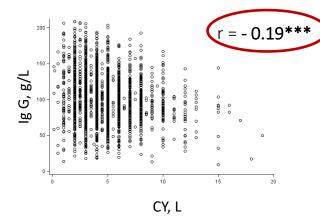
Heritability and genetic correlation

$$y_{ijklm} = \mu + P_i + S_j + S_j + (P \times S)_{ik} + (P \times S)_{ij} + h_l + a_m + e_{ijklm}$$


$$y_{ijkl} = \mu + P_i + S_j + (P \times S)_{ij} + h_k + a_l + e_{ijkl}$$

Pedigree info (19,699 individuals):


Trait	Mean	SD	Range	CV, %
IgG, g/L	102.16	33.62	2.07-209.96	32.90
CY, L	4.63	2.28	0.10-15.00	49.20



Trait	Mean	SD	Range	CV, %
IgG, g/L	102.16	33.62	2.07-209.96	32.90
CY, L	4.63	2.28	0.10-15.00	49.20

Freduency 150 150 200 IgG, g/L

Pearson's correlation

ANOVA IgG:

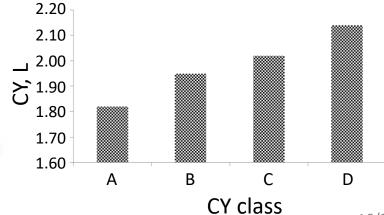
CY class	LSM IgG, g/L	SE
A (≤ 3 L)	110.02ª	2.31
B (3-4 L)	104.45 ^b	2.51
C (4-6 L)	99.18 ^c	2.51
D (> 6 L)	93.71 ^d	2.54

ANOVA IgG:

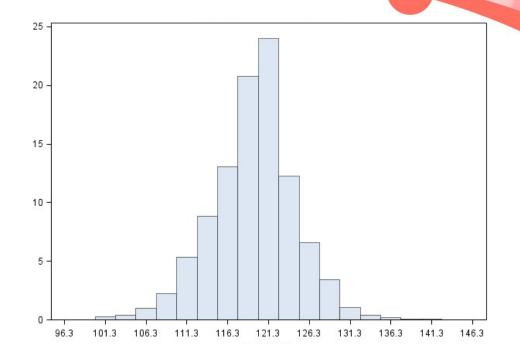
CY class	LSM IgG, g/L	SE
A (≤ 3 L)	110.02ª	2.31
B (3-4 L)	104.45 ^b	2.51
C (4-6 L)	99.18 ^c	2.51
D (> 6 L)	93.71 ^d	2.54



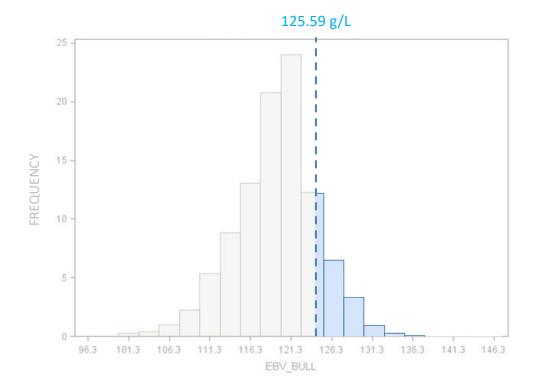
ANOVA IgG:


CY class	LSM IgG, g/L	SE
A (≤ 3 L)	110.02ª	2.31
B (3-4 L)	104.45 ^b	2.51
C (4-6 L)	99.18 ^c	2.51
D (> 6 L)	93.71 ^d	2.54

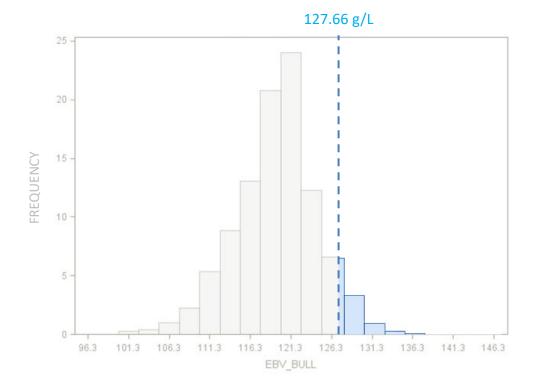
COLOSTRUM



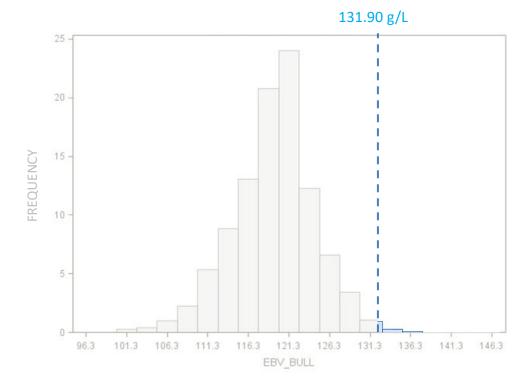
Trait	Heritability	r _a	r _p	
IgG , g/L	0.22 (0.05)	0.25 (0.22)	-0.26 (0.03)	
CY, L	0.07 (0.03)	-0.55 (0.25)	-0.20 (0.03)	


Bulls ranking for IgG

Percentile		EBV (g/L)	
100%	Max	147.36	
99%		131.90	\bigcirc
75%	Q3	122.353	
50%	Median	119.861	
25%	Q1	116.495	
1%		106.07	(<u>••</u>)
0%	Min	95.93	



Best 10%



Best 5%

Best 1%

Retrospective investigation on performance of the offspring of the top 10% bulls

Top 10%	n daughters	Mean	SD	Min	Max
IgG , g/L	631	118.23	33.43	31.93	208.49
CY, L	607	4.62	2.37	0.10	15.00

Remaining ones	n daughters	Mean	SD	Min	Max
IgG , g/L	2044	97.05	31.34	9.20	208.59
CY, L	1952	4.69	2.27	0.12	15.00

Retrospective investigation on performance of the offspring of the top 10% bulls

Min	SD	Mean	n daughters	Top 10%
Observed	33.43	118.23	631	IgG, g/L
difference =	2.37	4.62	607	CY, L
21.2 g/L of lgG				
	SD	Maan	n daughters	Pomaining ones

Remaining ones	n daughters	Mean	SD		aλ
IgG, g/L	2044	97.05	31.34	9.20	2 8.59
CY, L	1952	4.69	2.27	0.12	15.00

Conclusions

- CY is variable and heritable in dairy cows
- Optimizing at the same time quality (IgG) and quantity (CY) of colostrum delivered by cows at the first milking is achievable through selective breeding
- A proper index should consider their antagonistic association to ensure a response in both traits in the right direction

Official selection index

Official Science of the					
	EBV IgG	Spearman	1	EBV CY	Spearman
		corr.	_		corr.
Production, functionality, typ	pe (PFT)	0.24*		PFT	-0.31**
Economic and functional	IES	0.30**		IES	-0.33**
	ICSPR	0.28**		ICSPR	-0.30**
	Milk	0.38***		Milk	-0.48***
ANAFIB	Kg fat	0.30**		Kg fat	-0.39***
	Kg pro	0.42***		Kg pro	-0.48***
Association of the state of the	% fat	0.01 ns		% fat	-0.09 ns
Alexandra delle Razza Erischa d'	%pro	0.28**		%pro	-0.28**
Functional udder	ICM	-0.01 ns		ICM	-0.16 ns
	SCC	0.05 ns		SCC	-0.11 ns
	Fertility	0.05 ns		Fertility	-0.03 ns
	Longevity	0.015 ns		Longevity	-0.25*
	Maternal calving ease	0.16 ns		Calving ease	-0.21*
	Feet & Legs	0.01 ns		Feet & legs	0.15 ns

Considerations and perspectives

- Calf health data are needed and collection is recommended for future development of an index
- Such calf health index should take into account also colostrum (dam side)
- Often colostrum of various dams is pooled, pasteurized and then administered to calves
- Non always a parallelism between mother colostrum and calf health (pooled colostrum)

Thank you for the attention

□ arianna.goi@studenti.unipd.it

UNIVERSITÀ DEGLI STUDI DI PADOVA

UNIVERSITÀ DI BOLOGNA DEPARTMENT OF VETERINARY MEDICAL SCIENCES

With the support of:

