
Uncovering environmental effects and genetic parameters on the mineral composition of sheep milk

Johanna Ramírez-Díaz¹, Giorgia Stocco², Claudio Cipolat-Gotet², M. Ablondi², A. Summer², Alessio Negro³, Alessandro Lotto⁴, Simone Blotta⁴, Francesco Tiezzi⁵, Stefano Biffani¹

¹National Research Council, Institute of Agricultural Biology and Biotechnology, Milano, Italy, ²University of Parma, Dep. of Veterinary Science, Parma, Italy, ³Associazione Nazionale della Pastorizia (Asso.Na.Pa.), Ufficio Studi, Roma, Italy, ⁴Nutristar spa, Reggio Emilia, Italy, ⁵ Department of Agriculture, Food, Environment and Forestry, Università degli Studi di Firenze, Firenze, Italy

Cheese Industry

 The global dairy sheep cheese production reached 1.5 million metric tons in 2021-2022

The sheep cheeses production in Italy in 2022 was approximately 37 tonnes

Rural context and development

The sheep production systems:

- •Importance in the rural context: Challenges to produce other species
- Nutritional composition and taste of dairy products
- Higher quality composition

Average values of sheep milk composition:

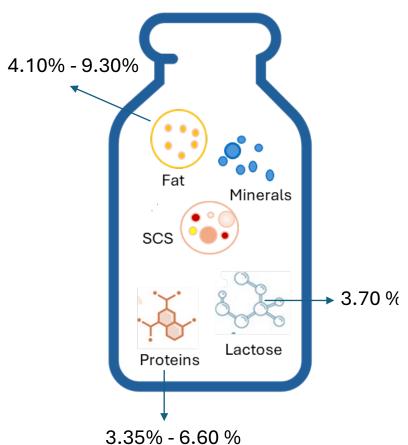
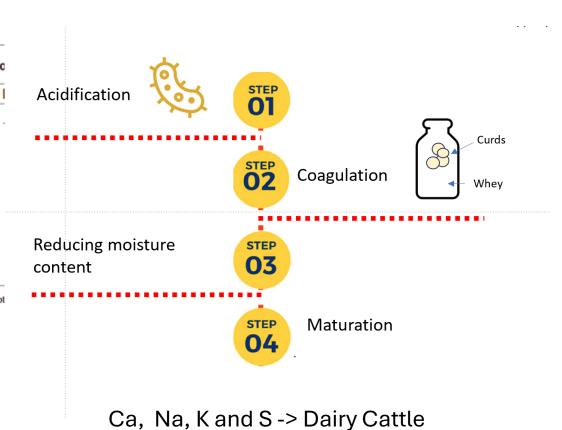



Table 5-Concentration of minerals in milk from vario

	Cattle ^e	Sheep ^g
(mg/100 g)		
Čalcium"	122	195 to 200
Phosphorus	119	124 to 158
Potassium	152	136 to 140
Magnesium	12	18 to 21
Sodium	58	44 to 58
$(\mu q/100 q)$		
Zinc	530	520 to 747
Iron	80	72 to 122
Copper	60	40 to 68
Manganese	20	5.3 to 9
lodine	2.1	10.4
Selenium	0.96	3.1

^aSchryver and others (1986); ^bMehaia and others (1995); ^cSalimei and ot Haj and Al Kanhal (2010).

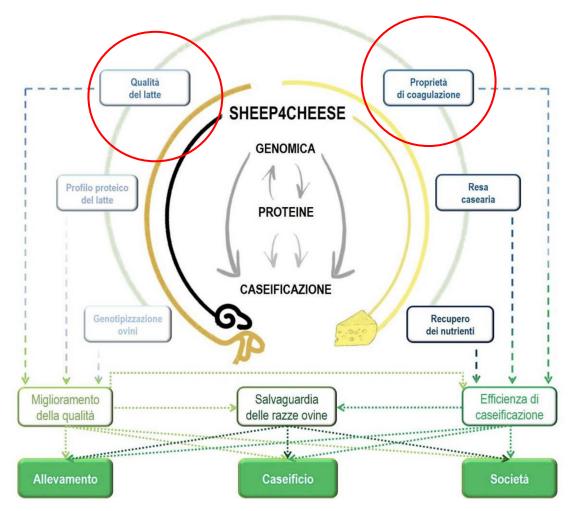
Barłowska et al., 2011

Giovanni Bittante

Limited and almost non-existent in local breeds -> Cheese production -> environmental adaptation, traditions and cultural heritage

Taylor & Francis NEW ZEALAND JOURNAL OF AGRICULTURAL RESEARCH Estimation of genetic parameters for cheesehttps://doi.org/10.1080/00288233.2024.2368505 OPEN ACCESS Check for update making traits in Spanish Churra sheep RESEARCH ARTICLE Estimation of genetic parameters for production, R. Pelayo ¹, B. Gutiérrez-Gil ¹, A. Garzón ², C. Esteban-Blanco ¹, H. Marina ¹, J.J. Arranz ¹ $\stackrel{\circ}{\sim}$ $\stackrel{\boxtimes}{\boxtimes}$ composition and processability of milk from dairy sheep in a **New Zealand flock** Show more V Ana Carolina Marshall (10 a,b), Nicolas Lor **55** Cite Mike Weeks^d and Warren McNabb^b 710. Heritability and genomic analysis of coagulation event in sheep Get rights and content 7 milk ^aDepartment of Animal Science, School of Agricultu open archive New Zealand; bThe Riddet Institute, Massey Unive G. Gaspa (1), A. Cesarani (1), F. Correddu (1), M. Congiu (1), C. Dimauro (1), A. Pauciullo (1), N.P.P. Scientific and Industrial Research Organisation (C Macciotta (i) Foods & Bioproducts Group, AgResearch Ltd, Mas Pages: 2928 - 2931 OPEN Iournal of Dc Available onlin https://doi.org/10.3920/978-90-8686-940-4 710 61. PMCID: PMC8453569 In Press, Journal Pre-pro .12552 PMID: 34014003 Published Online: February 09, 2023 Detailed mineral profile lerlying milk production traits in Valle del Belice Full-text cheese from cows, buffa bility mapping and dromedary camels, and efficiency of Anna Maria Sutera, ^{III} Marco Tolone, ² Salvatore Mastrangelo, ² Rosalia Di Gerlando, ² Maria Teresa Sardina, ² Baldassare Portolano, ² Ricardo Pong-Wong, ³ and Valentina Riggio ^{3,4} recovery of minerals in their cheese ► Author information ► Article notes ► Copyright and License information PMC Disclaimer Nicolò Amalfitano ¹ A M, Nageshvar Patel ¹, Mohamed-Laid Haddi ², Hamida Benabid ³, Michele Pazzola ⁴, Giuseppe Massimo Vacca ⁴, Franco Tagliapietra ¹, Stefano Schiavon ¹

- In general, sheep breeding programs are related to Milk yield, Meat and growth traits and disease resistance → Programs to improve the cheese making process don't exist → mineral composition
- The role of minerals in improving milk composition and quality → for cheese production
- Genetic programs → Have permanent and cumulative changes in economic important traits:
 - Step 1: To guide effective breeding strategies is necessary to estimate variance components and genetic parameters


SHEEP4CHEESE

Aim:

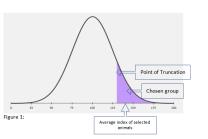
Improving the milk quality and efficiency of cheese-making process

To improve the quality of the sheep milk through genetic selection of the animals

Objectives

General plan of activities to assess the composition and mineral content:

Genotyping



Parental information from Massese and Comisana Sheep

5. GEBVs and EBVs estimation
Selection to economical important traits and genetic gain prediction

4. Genome wide association analyses

ingle, multitrait models and pleiotropic effects

Phenotyping

Evaluations of Mineral contents and milk composition

3. Genetic parametersSingle and multitrait models

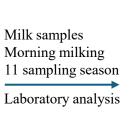
Evaluation of coagulation and cheese making process

1

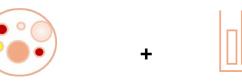
2. Statistical modelling

1. Data analysis

MATERIAL



Italian Apenines


Central and Southern Italy

%Fat, %Protein, %Caseina, %Lactose MilkoScan FT3 infrared analyser

Somatic Cell Score Fossomatic DC7 somatic cell counter

рΗ Crison Basic 25 portable pH meter

Ca, P, Na, K, Mg, S, Cl Wavelength Dispersive X-ray fluorescence

To explain this:

Inclusion of environmental factors: animal status, sampling and other traits

Inclusion of genetic information

Pedigree:

Comisana: 742,851 animals

(sires: 15033 and 172,481 dams)

Massese: 132,685

(sires: 3014 and 45626 dams).

METHODS

 $y_t = X\beta + Wc + Zu + e$ Additive genetic Effects

Quality Control

Missing information Biological Thresholds

••••

Distribution on PO
Distribution on DIM

DIM:

Class 1: 8 -30d,

Class 2: 31 -50d;

Class 3: 51-70d;

Class 4: 71-90d;

Class 5: 91-110d;

Class 6: 111 -130d;

Class 7: 131-148d

Milk Yield

class 1: 0.3 - 0.55 kg;

class 2: 0.6 - 0.79 kg;

class 3: 0.8 - 0.97 kg;

class 4: 1 - 2.33 kg

Fat %

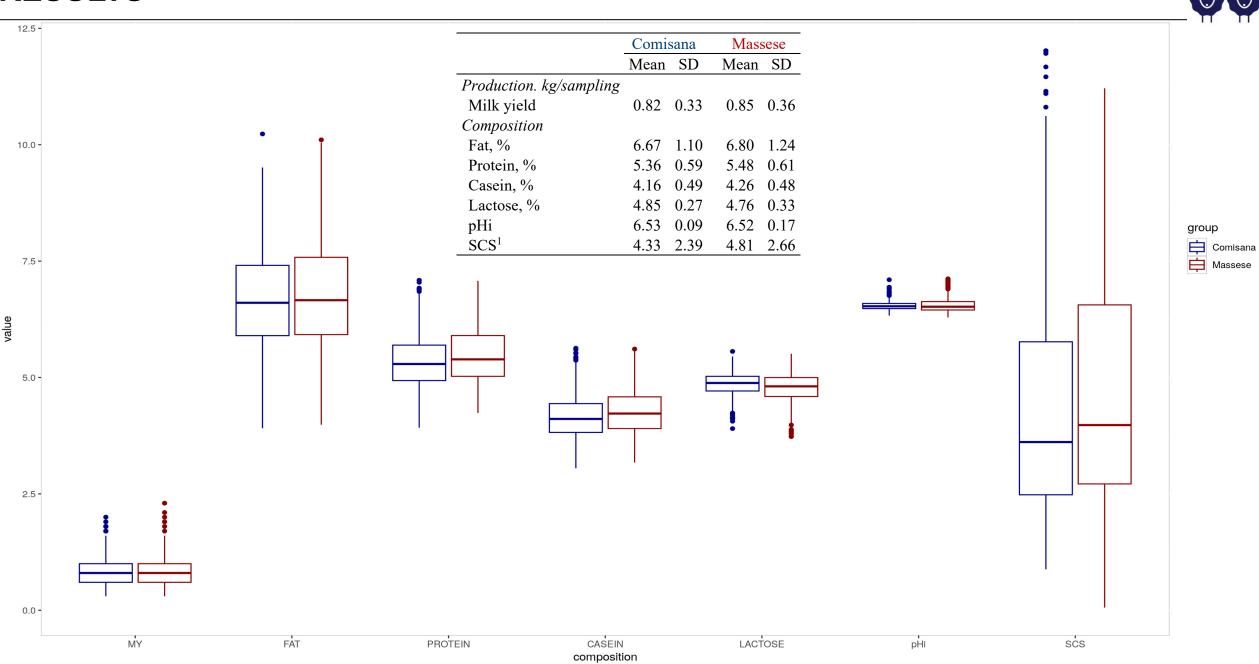
Casein %

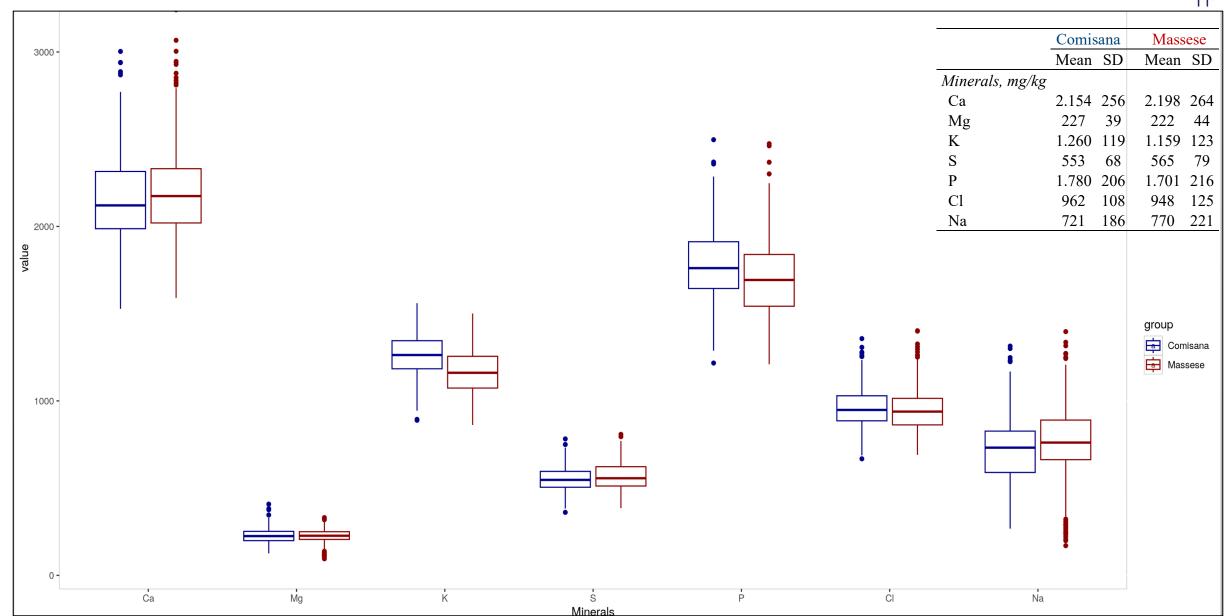
Lactose %

pН

SCS

Parity Order:


1;2;3;4; > 5


	Со	Ma	Co	Ma	Со	Ма	Co	Ма	Со	Ма	Co	Ма	Co	Ма
	C	а	I	-	N	lg	:	S	N	la	I	K	(CI
Systematic effects														
Parity Order		*		*	*	*		*	*		*	*	*	*
DIM	*		*		*		*		*			*	*	
MY		*	*	*		*		*	*	*	*	*		*
Fat	*	*			*	*	*		*	*				*
Casein	*		*	*		*	*	*	*	*				
Lactose		*			*		*	*	*		*	*	*	*
рН		*		*		*	*	*		*		*		*
SCS ¹			*	*	*				*	*		*	*	*
Random Effects														
Direct additive genetic effects	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Sampling	*	*	*	*	*	*		*	*	*		*	*	*
Residual	*	*	*	*	*	*	*	*	*	*	*	*	*	*

Co: Comisana Ma: Massese *p > 0.05

The specific significant effects on individual minerals were not exactly the same!!!

	Comisana	Massese
	$h^2 + SE$	$h^2 + SE$
Production, kg/sampling		
Milk yield	0.14 ± 0.10	0.29 ± 0.14
Composition		
Fat, %	0.22 ± 0.11	0.15 ± 0.10
Protein, %	0.10 ± 0.06	0.34 ± 0.14
Casein, %	0.30 ± 0.11	0.28 ± 0.14
Lactose, %	0.31 ± 0.10	0.29 ± 0.13
SCS ¹	0.081 ± 0.06	0.28 ± 0.12

	Comisana	Massese
	$h^2 + SE$	$h^2 + SE$
Minerals, mg/kg		
Ca	0.45 ± 0.11	0.41 ± 0.17
P	0.49 ± 0.12	0.17 ± 0.11
Mg	0.25 ± 0.12	0.16 ± 0.11
S	0.34 ± 0.10	0.14 ± 0.11
K	0.40 ± 0.11	0.28 ± 0.12
Na	0.29 ± 0.12	0.14 ± 0.14
Cl	0.42 ± 0.10	0.17 ± 0.12

- ✓ Differences highlight the need for breed-specific investigations to characterize the complex relationships between milk composition and mineral content
- ✓ The synthesis of the minerals in milk depend several factors that include the diet and nutrition, stress and illness, hormonal levels, but also genetic factors that can be determinate the absorption, transport and metabolism

Heritability reported for composition milk sheep

Higher variability of heritability estimates in Sheep Breeds !!!

Table 2Pooled estimates of heritability from meta-analysis in dairy sheep.

Trait ¹	Pooled h ² (±SE)	\rightarrow	Min ² h ²	Max ³ h ²	N obs ⁴	N studies	I ² between ⁵	I ² within ⁶
MY	0.24 ± 0.02	\longrightarrow	0.06	0.46	29	19	83.98	15.03
FY	0.21 ± 0.06	\longrightarrow	0.14	0.28	7	5	0.26	96.7
PY	0.22 ± 0.04	\longrightarrow	0.12	0.30	7	5	0.64	95.77
FC	0.28 ± 0.11		0.04	0.68	16	12	54.79	45.13
PC	0.33 ± 0.07		0.10	0.77	25	17	62.58	37.2
SCS	0.13 ± 0.02		0.03	0.27	29	22	52.64	44.26
FEC	0.14 ± 0.04		0.09	0.35	6	3	0	57.97

SCS – somatic cell score, FEC – faecal egg count.

Mucha et al., 2022

¹ Trait: MY – milk yield, FY – fat yield, PY – protein yield, FC – fat content, PC – protein content.

² Minimum h² from individual studies included in meta-analysis.

³ Maximum h² from individual studies included in meta-analysis.

⁴ Number of observations used in meta-analysis.

⁵ Heterogeneity between clusters.

⁶ Heterogeneity within clusters.

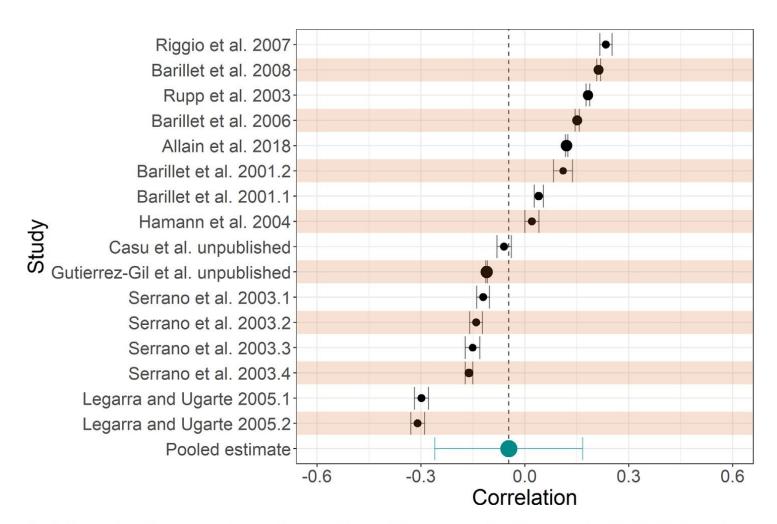
Heritability reported for composition milk sheep

Genetic (co)variances between milk mineral concentration and chemical composition in lactating Holstein-Friesian dairy cows

G. Visentin ¹, G. Niero ¹ , D.P. Berry ², A. Costa ¹, M. Cassandro ¹, M. De Marchi ¹, M. Penasa ¹

Table 1. Mean, genetic standard deviation (s_g) , heritability (h^2) ; standard error in parentheses), repeatability (t); standard error in parentheses) and coefficient of genetic variation (CV_g) estimated using the repeatability animal model for calcium (Ca), potassium (K), magnesium (Mg), sodium (Na) and phosphorus (P) concentration, chemical composition, pH and somatic cell score (SCS) of cow milk

Traits	n	Mean	Mean $\sigma_{ m g}$		t	CV _g (%)	
Ca (mg/kg)	12 208	1295.29	85.58	0.54 (0.04)	0.66 (0.01)	6.61	
K (mg/kg)	12 165	1684.48	56.09	0.19 (0.03)	0.25 (0.01)	3.33	
Mg (mg/kg)	12 198	136.89	7.88	0.21 (0.03)	0.27 (0.01)	5.76	
Na (mg/kg)	12 223	439.06	21.56	0.24 (0.04)	0.39 (0.02)	4.91	
P (mg/kg)	12 220	995.04	62.25	0.42 (0.04)	0.53 (0.01)	6.23	


Genetic correlation matrix among milk yield (MY), composition and minerals in Comisana (above the diagonal) and Massese (below the diagonal) breeds.

							Com	issana						
				Сотра	osition %		Minerals, mg/kg							
		MY	Fat	Protein	Casein	Lactose	SCS ¹	Ca	P	Mg	S	K	Na	Cl
	MY	*	0.55	0.35	0.10	-0.07	0.51	-0.61	-0.19	-0.36	0.30	-0.09	0.04	-0.65
	Fat, %	0.38	*	0.51	NC	-0.89	NC	0.08	0.16	0.07	-0.10	-0.68	NC	0.13
ion	Protein, %	NC	0.21	*	NC	0.32	-0.66	0.33	0.33	0.33	NC	-0.51	0.22	-0.44
isc	Casein, %	NC	NC	NC	*	-0.13	-0.47	0.20	0.26	0.25	NC	-0.20	0.21	-0.41
Composition	Lactose, %	NC	NC	NC	0.28	*	NC	0.08	-0.22	-0.40	-0.10	-0.89	NC	0.64
Co	pН													
	SCS ¹	NC	NC	- NC	0.19	NC	*	-0.22	-0.50	NC	-0.19	NC	NC	NC
	Ca	-0.35	-0.51	0.071	0.33	0.49	-0.08	*	0.66	0.67	0.30	-0.30	0.62	0.27
mg/kg	P	-0.40	-0.48	-0.038	0.016	-0.045	-0.32	0.25	*	NC	0.35	0.05	0.51	0.04
l mg	Mg	-0.22	-0.73	-0.37	0.013	-0.26	0.23	-0.39	0.24	*	0.47	-0.023	0.74	0.10
als,	S	-0.34	-0.54	0.046	0.17	-0.006	-0.13	-0.33	0.66	0.57	*	-0.37	0.43	-0.24
Minerals,	K	-0.11	-0.59	-0.42	-0.01	-0.78	NC	-0.10	0.010	0.34	-0.037	*	-0.31	0.52
Mir	Na	-0.80	-0.53	-0.36	-0.38	-0.79	NC	-0.53	0.61	0.79	NC	0.35	*	0.11
	Cl	-0.30	0.03	-0.60	-0.60	-0.70	0.88	-0.74	-0.74	0.039	-0.18	0.01	0.26	*

 $^{1}SCS = log_{2}(somatic cell count \times 10^{-5}) + 3$

Genetic correlation reported for SCS and Milk yield

Mucha et al., 2022

Fig. 2. Forest plot showing genetic correlation estimates between somatic cell score and milk yield in dairy sheep.

Conclusions

• These differences highlight the need for breed-specific investigations to characterize the complex relationships between milk composition and mineral content. The synthesis of the minerals in milk depend several factors that include the diet and nutrition, stress and illness, hormonal levels, but also genetic factors that can be determinate the absorption, transport and metabolism

Heritability

- Composition: Low to medium heritability for both breeds
- Minerals: Medium to high heritability for both breeds

- Genetic Correlation

Generally negative genetic correlations between minerals and composition but highly variable

- Need to increase the number of records to more accurate estimates
- Need of the increase research in these area to obtain better insight about the relationship between this traits → Breeding programs

Thank you for your attention