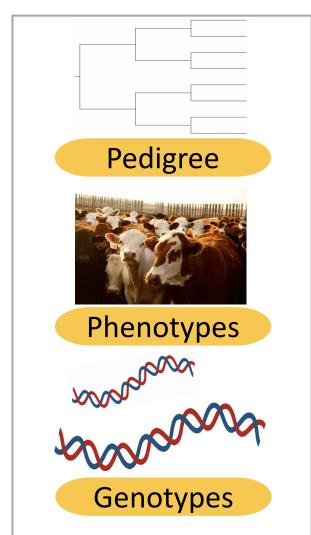
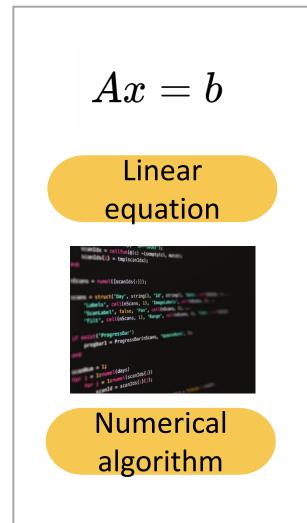
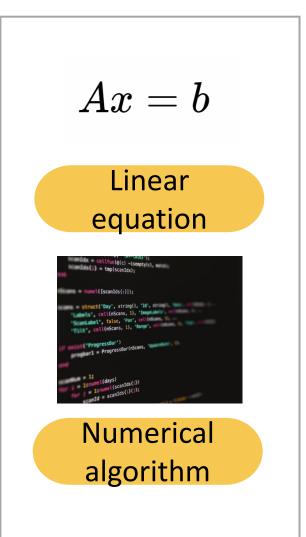


Modern genetic evaluation systems: A Python-based programming approach


<u>Kristin Lee</u>, Gordon Vander Voort, Ricardo Ventura, Flavio Schenkel, Angela Cánovas


Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada



Introduction

Genetic evaluation systems

Introduction

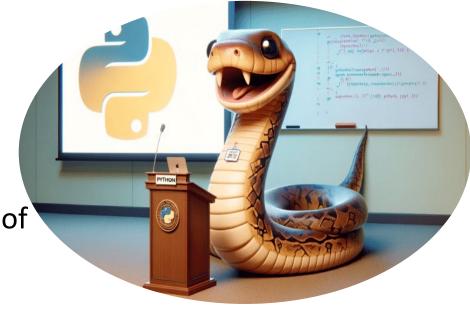
Traditional genetic evaluation systems are developed in C or Fortran

Benefits

- Lower-level languages
 - Efficiency
 - Numerical & scientific computing
 - Performance optimization
 - Explicit memory management

Limitations

- Less flexibility
- Slower development
 - Higher maintenance
 - → High costs
 - → Affect innovation


Objective

Python could be used to develop an adaptable software that can produce accurate breeding values within practical timeframes

Benefits

- Higher-level language
- Faster development
- Easier maintenance

→ Easy & fast integration of new features

Limitations

- Slower performance
- Higher memory requirements
- → Modern computers

Data

Simulated purebred angus beef cattle:

- AlphaSimR
- Sample size: N = 976,400
- Pedigree: 15 generations
- Phenotypes: Birth weight, weaning gain, post-weaning gain
- Masked phenotypes for final simulated generation

Data

Genotypes:

- 48,981 SNP markers
- Random sampling from final simulated generation
- Sample Size: 10,000
- 3 replicates of sample size

Linear model

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \end{bmatrix} + \begin{bmatrix} \mathbf{Z_1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{Z_2} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{Z_3} \end{bmatrix} \begin{bmatrix} \mathbf{a_1} \\ \mathbf{a_2} \\ \mathbf{a_3} \end{bmatrix} + \begin{bmatrix} \mathbf{e_1} \\ \mathbf{e_2} \\ \mathbf{e_3} \end{bmatrix}$$

y = vector of phenotype records

 μ = phenotypic mean

Z = incidence matrix relating phenotypes to animal effects

a = vector of random additive genetic effects

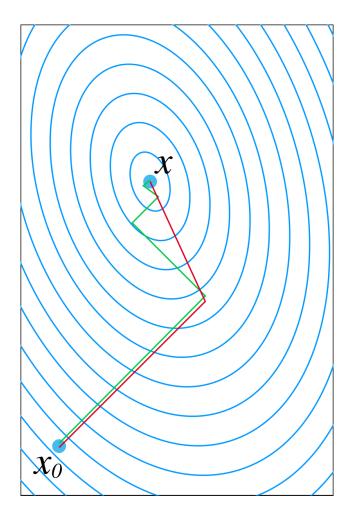
e = vector of residual effects

Assumptions

$$\operatorname{Var}\begin{bmatrix}\mathbf{a}\\\mathbf{e}\end{bmatrix} = \begin{bmatrix}\mathbf{G} \otimes \mathbf{Rel} & 0\\ 0 & \mathbf{R} \otimes \mathbf{I}\end{bmatrix}$$

Rel = relationship matrix

G = (co)variance matrices for genetic effects


R = (co)variance matrices for residual effects

I = identity matrix

Numerical algorithm

Preconditioned conjugate gradient with iteration on data:

- Diagonal preconditioner
- Serial, multiprocessing, sparse
- Convergence criteria = $\frac{\|\mathbf{r_i}\|}{\|\mathbf{b}\|}$ = 1×10^{-5}

Software performance

Runtime analysis:

- The software was executed five times
- Average time elapsed of major components was reported

Server specifications:

- Operating system: Linux (64-bit)
- Memory (RAM): 96GB
- Processor: Intel(R) Xeon(R) Gold 6242 CPU @ 2.80GHz
- Cores: 8

Results verification

MiXBLUP:

- Commercial software
- Genetic evaluation system
- Pearson correlation
- Estimated breeding values

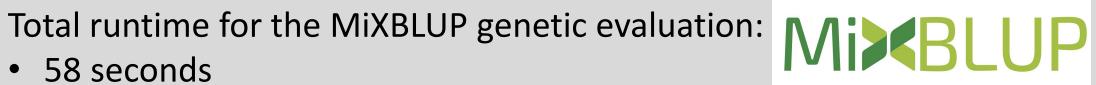
Software performance

Component	Time (seconds)
Read data	1.79
Preprocessing	38.51
Relationship matrix	
Mendelian sampling	0.19
Inbreeding	15,020.00
Inverse of the relationship matrix	3.57
Preconditioned conjugate gradient	
A) Serial processing	2,688.15
B) Multiprocessing	933.24
C) Sparse matrix operations	770.12
Write results	4.09

Software performance

Component	Time (seconds)	
Read data	1.79	
Preprocessing	38.51	
Relationship matrix		
Mendelian sampling	0.19	
Inbreeding	15,020.00	
Inverse of the relationship matrix	3.57	
Preconditioned conjugate gradient		
A) Serial processing	2,688.15	
B) Multiprocessing	933.24	
C) Sparse matrix operations	770.12	
Write results	4.09	

Software performance


Component	Time (seco	onds)	
Read data	1.79		
Preprocessing	38.51		
Relationship matrix			
Mendelian sampling	0.19		
Inbreeding	15,020.00	4 hours 10 min	nutes
Inverse of the relationship matrix	3.57		
Preconditioned conjugate gradient			
A) Serial processing	2,688.15		
B) Multiprocessing	933.24		
C) Sparse matrix operations	770.12		
Write results	4.09		

Software performance

Component	Time (seco	nds)
Read data	1.79	
Preprocessing	38.51	
Relationship matrix		
Mendelian sampling	0.19	
Inbreeding	15,020.00	
Inverse of the relationship matrix	3.57	
Preconditioned conjugate gradient		
A) Serial processing	2,688.15	44 minutes 48 seconds
B) Multiprocessing	933.24	15 minutes 33 seconds
C) Sparse matrix operations	770.12	12 minutes 50 seconds
Write results	4.09	12

Software performance

• 58 seconds

Results verification

Pearson correlation coefficient (r) between estimated breeding values (EBV) of the Python and MiXBLUP genetic evaluation systems

Trait	r _{EBV:EBV}
Birth weight	1.0
Weaning gain	1.0
Post-weaning gain	1.0

Software performance

Component	Time
Read genotypes	56.06
Preprocessing	17.95
Relationship matrix	
Genomic relationship matrix (G)	29.49
Blend & tune G	5.06
Invert G	10.11
Construct and invert A22	52,040.54
Construct H-1	31.51
Preconditioned conjugate gradient	
Sparse matrix operations	2,367.50

Software performance

Component	Time
Read genotypes	56.06
Preprocessing	17.95
Relationship matrix	
Genomic relationship matrix (G)	29.49
Blend & tune G	5.06
Invert G	10.11
Construct and invert A22	52,040.54
Construct H-1	31.51
Preconditioned conjugate gradient	
Sparse matrix operations	2,367.50

Software performance

Component	Time
Read genotypes	56.06
Preprocessing	17.95
Relationship matrix	
Genomic relationship matrix (G)	29.49
Blend & tune G	5.06
Invert G	10.11
Construct and invert A22	52,040.54
Construct H-1	31.51
Preconditioned conjugate gradient	
Sparse matrix operations	2,367.50

Software performance

Component	Time	
Read genotypes	56.06	
Preprocessing	17.95	
Relationship matrix		
Genomic relationship matrix (G)	29.49	
Blend & tune G	5.06	
Invert G	10.11	
Construct and invert A22	52,040.54	14 hours 27 minutes
Construct H-1	31.51	
Preconditioned conjugate gradient		
Sparse matrix operations	2,367.50	

Software performance

Component	Time
Read genotypes	56.06
Preprocessing	17.95
Relationship matrix	
Genomic relationship matrix (G)	29.49
Blend & tune G	5.06
Invert G	10.11
Construct and invert A22	52,040.54
Construct H-1	31.51
Preconditioned conjugate gradient	
Sparse matrix operations	2,367.50

Software performance

Component	Time	
Read genotypes	56.06	
Preprocessing	17.95	
Relationship matrix		
Genomic relationship matrix (G)	29.49	
Blend & tune G	5.06	
Invert G	10.11	
Construct and invert A22	52,040.54	
Construct H-1	31.51	
Preconditioned conjugate gradient		
Sparse matrix operations	2,367.50	39 minutes 27 second

Software performance

Total runtime for the MiXBLUP genetic evaluation:

15 minutes 14 seconds

Results verification

Pearson correlation coefficient (r) between estimated breeding values for genotyped individuals of the Python & MiXBLUP genetic evaluation systems

Trait	r _{EBV:EBV}
Birth weight	0.99
Weaning gain	0.99
Post-weaning gain	0.99

Conclusions

Python for genetic evaluation system development:

- Simple development process
- Accurate
- Practical timeframes for small to medium sized breeding programs
- Components needing optimization identified

Acknowledgements

klee32@uoguelph.ca

