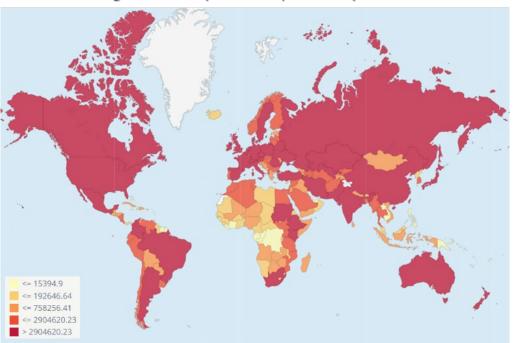


Towards future sustainable dairy farming systems: An integrated, adapted and circular approach

Xabier Díaz de Otálora, Aurelie Wilfart, Joanna Fratczak-Müller, Lorraine Balaine, Giorgio Ragaglini, Federico Dragoni, Barbara Amon

xdiadeo@upv.es



Dairy production in the Global and European context

Source: FAOSTATS

0.9 Gt of milk produced in 2021 (*FAO 2022*).

80% of the global population consumes milk regularly (FAO and GDP, 2019).

81% of global milk production comes from cattle with Europe as the second largest producer (**33%**) (FAO 2023).

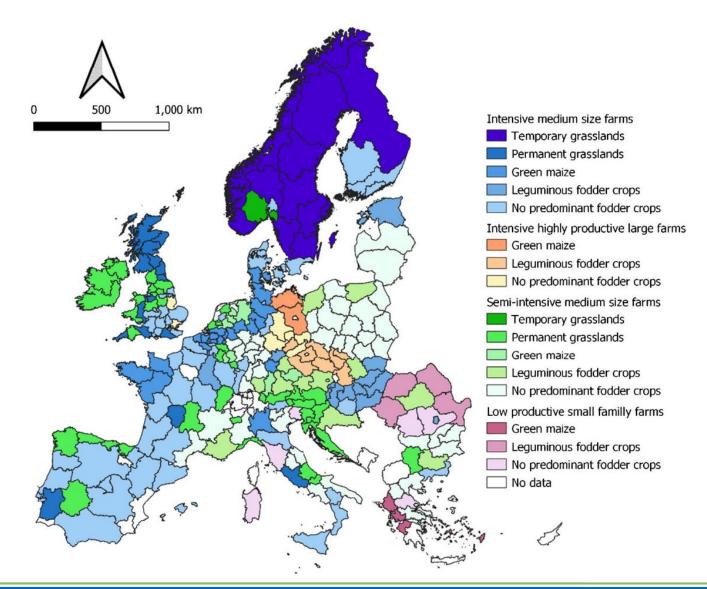
20.2 million cattle heads in 2021 in Europe with an average yield of **7700** kg milk cow⁻¹ day⁻¹ (*European Commission 2023*).

The role of dairy production systems in our society

1. Efficient protein producers.

2. Feed on fibrous feedstuffs not edible by humans or monogastric animals.

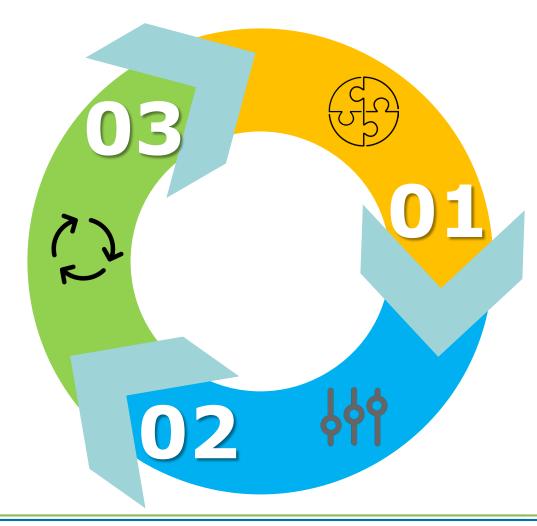
3. Contribute to carbon fixation in grasslands.


- 1. Contributors to the global food security.
- 2. Constituents of a healthy and balanced diet.
- 3. Provision of ecosystem services.

- 1. 1 million jobs in Europe, specially in rural areas.
- 2. Sector deeply rooted to the territory and its economy.

Systems diversity: Weakness or Strength?

How should we address the challenges of the sector?



Integrated, circular, and adapted approaches are needed

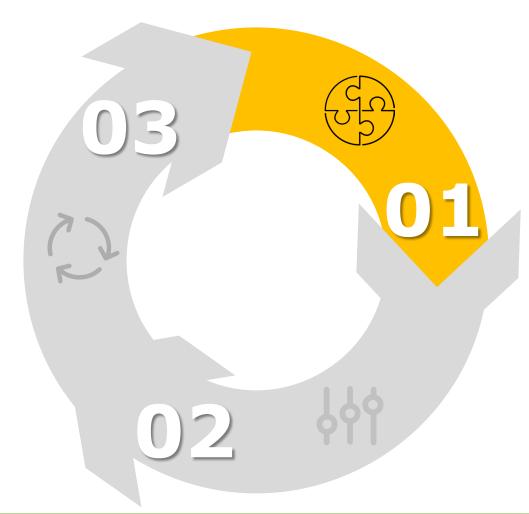
Circularity

Closing of carbon and nutrient cycles, protein self-sufficiency and improved manure nutrient utilization.

Identify trade-offs and synergies between sustainability indicators by applying multi-criteria assessment approaches.

Adaptation

Assess effects of adapted mitigation measures, facilitating the application of context-specific policies



Integrated, circular, and adapted approaches are needed

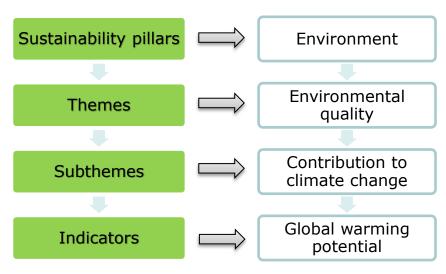
Circularity

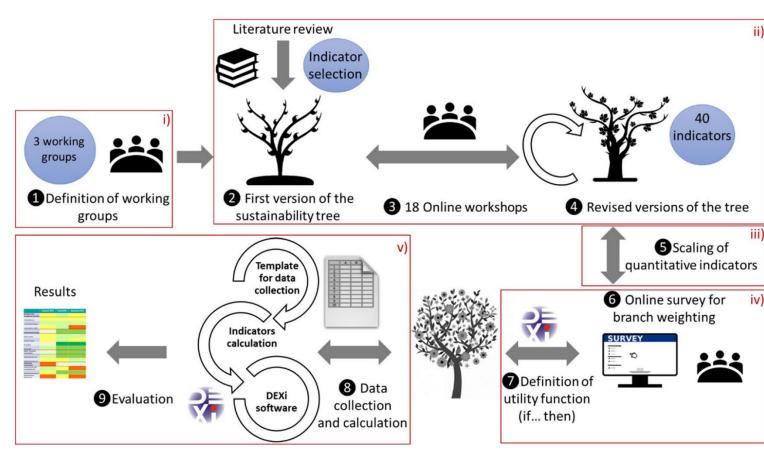
Closing of carbon and nutrient cycles, protein self-sufficiency and improved manure nutrient utilization.



Identify trade-offs and synergies between sustainability indicators by applying multi-criteria assessment approaches.

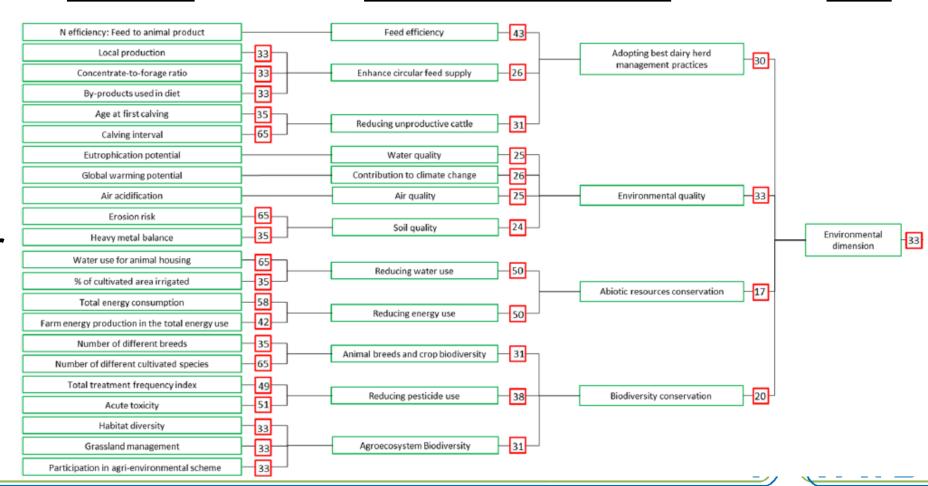
Assess effects of adapted mitigation measures, facilitating the application of context-specific policies





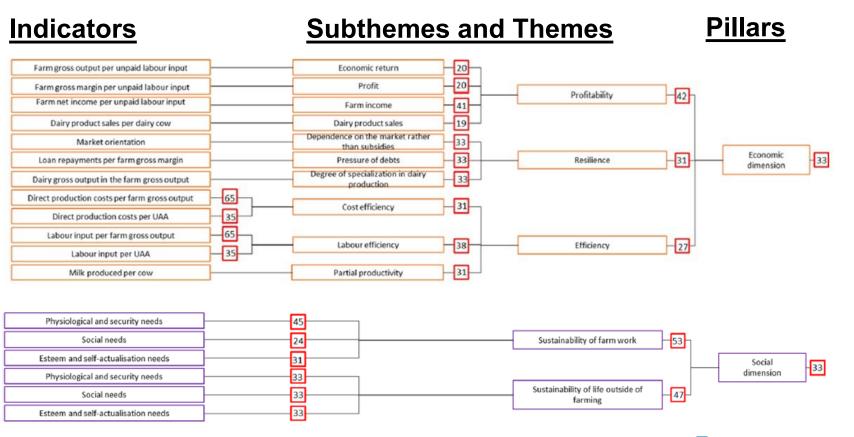
DexiDairy

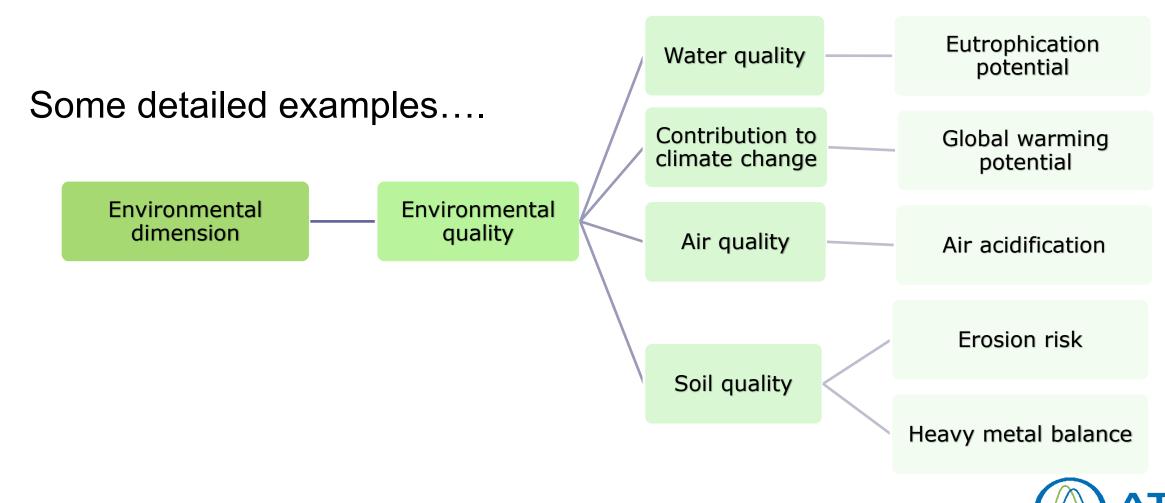
- ✓ Multi-attribute decision-making.
- ✓ Interactive and participative.
- ✓ Break down decision problems.
- ✓ Hierarchical decision model
- ✓ Tree-shaped structure
- ✓ Dependencies are considered

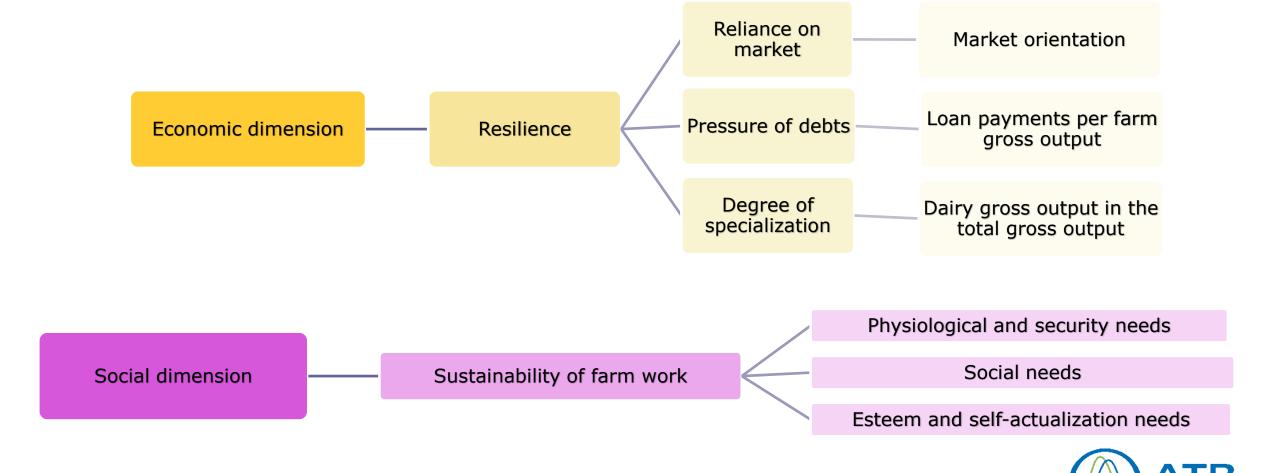


Indicators

Subthemes and Themes


<u>Pillar</u>


Environmental Pillar


Economic Pillar

Social Pillar

- ✓ Tested in 6 contrasting DPS across Europe.
- ✓ Overall sustainability scores were calculated.
- ✓ Trade-offs between sustainability attributes were identified.
- ✓ Avenues for future research were selected.

	Case Studies											
Attributes	FR_{01}	FR_{02}	DE_{01}	DE_{02}	IR_{01}	IR_{02}	NO_{01}					
Environmental sustainability ¹			Medium		Medium	Medium	Low to					
	Medium	Medium	to high	Medium	to high	to high	medium					
Environmental quality ²						0	Very					
	Medium	Medium	High	Medium	High	High	low					
Water quality ³	Medium		Medium	Medium	Medium	Medium						
	to low	Low	to high	to low	to high	to high	Low					
Eutrophication potential ³	Medium		Medium	Medium	Medium	Medium						
	to High	High	to low	to High	to low	to low	High					
Contribution to climate change ³			Medium		Medium	Medium						
	High	High	to low	High	to high	to high	High					
Global warming potential ³			Medium		Medium	Medium						
	High	High	to low	High	to high	to high	High					
Air quality ²			Very		Very	Very	Very					
	Medium	Medium	high	High	high	high	low					
Air acidification ²			Very		Very	Very	Very					
	Medium	Medium	low	Low	low	low	high					
Soil quality ³	Medium		Medium				Low to					
	to High	High	to High	High	High	High	medium					
Erosion risk ²		Very		Very	Very	Very	Very					
	Low	low	Low	low	low	low	high					
Heavy metal balance⁴	Low	Low	Low	Low	Low	Low	Low					

+

	Case Studies								
Attributes	FR_{01}	FR_{02}	DE_{01}	DE_{02}	IR ₀₁	IR ₀₂	NO_{01}		
Social sustainability ¹				Medium			Very		
	Medium	Medium	Medium	to high	Medium	High	low		
Sustainability of farm work ²	Medium	Medium	Medium	Medium	Medium				
	to low	to high	to high	to high	to low	High	Low		
Physiological and security needs ³	Medium	Medium	Medium	Medium	Medium	High	Low		
Social needs ³	Medium	Medium	Medium	Medium	Low	High	Medium		
Esteem and self-actualisation needs ³	Low	Medium	Medium	Medium	Medium	Medium	Low		
Sustainability of life outside of farming ²	Medium	Medium	Medium	Medium	Medium	Medium			
	to high	to low	to low	to high	to high	to high	Low		
Physiological and security ³	Medium	Medium	Medium	Medium	High	Medium	Low		
Social needs ³	Medium	Low	Medium	Medium	Medium	Medium	Low		
Esteem and self-actualisation needs ³	Medium	Medium	Low	Medium	Medium	Medium	Low		

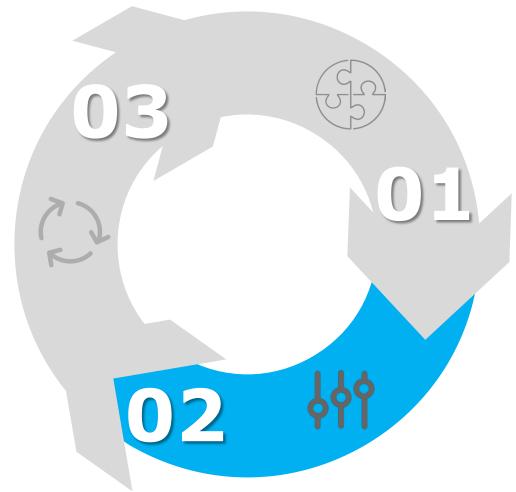
Agronomy for Sustainable Development (2023) 43:82 https://doi.org/10.1007/s13593-023-00935-3

RESEARCH ARTICLE

DEXi-Dairy: an ex post multicriteria tool to assess the sustainability of dairy production systems in various European regions

Aurelie Wilfart¹ · Vincent Baillet¹ · Lorraine Balaine² · Xabier Díaz de Otálora^{3,4} · Federico Dragoni³ · Dominika Joanna Krol⁵ · Joanna Frątczak-Müller⁶ · Anna Rychła⁷ · Divina Gracia P. Rodriguez⁸ · James Breen⁹ · Vasileios Anestis¹⁰ · Cathal Buckley² · Habtamu Alem⁸ · Wilfried Winiwarter^{7,11} · Nouraya Akkal-Corfini¹ · Barbara Amon^{3,7}

Accepted: 17 November 2023 / Published online: 14 December 2023 © The Author(s) 2023

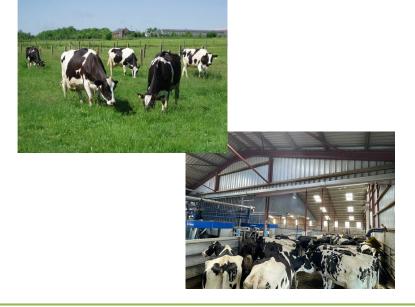


Integrated, circular and adapted approaches are needed

Circularity

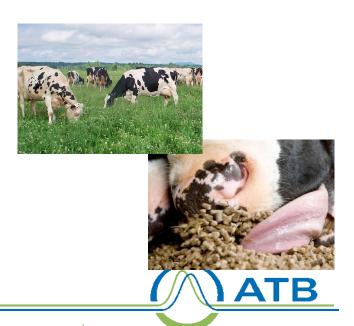
Closing of carbon and nutrient cycles, protein self-sufficiency and improved manure nutrient utilization.

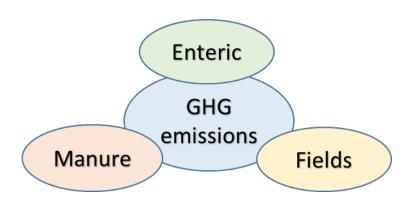
Identify trade-offs and synergies between sustainability indicators by applying multi-criteria assessment approaches.

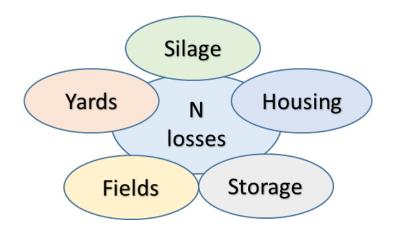

Adaptation

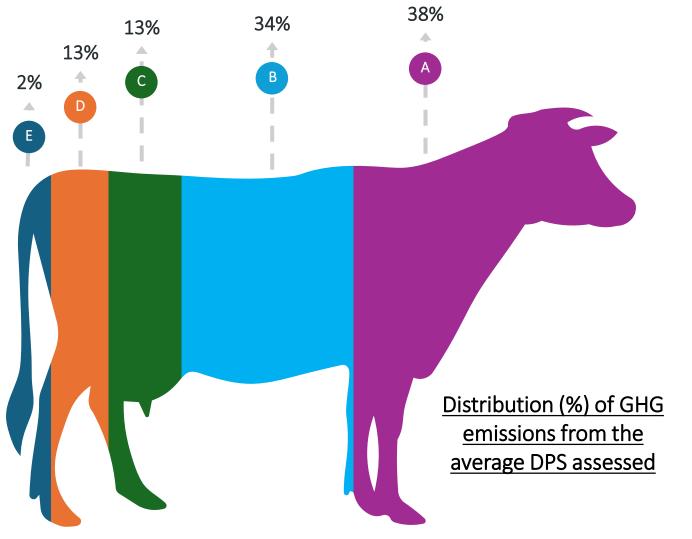
Assess effects of adapted mitigation measures, facilitating the application of context-specific policies

- ✓ System and whole-farm perspective.
- ✓ Understanding of trade-offs and synergies in emission mitigation.
- ✓ Implement context-specific and adapted strategies to the diversity of existing DPS


Housing systems


Manure handling and fertilization


Diets


- ✓ Whole-farm model (Del Prado et al., 2011) able to estimate GHG emissions (CH₄, N₂O and CO₂) and N losses (NO₃-, NH₃, N₂O and NO_X) from dairy production systems.
- ✓ System-based approach simulating nutrient fluxes and loops between farm components (animal, fields, manure management chain, etc.).
- ✓ Up-to-date EF factors and approaches (i.e., EMEP 2019, IPCC 2019 refined Guidelines).
- ✓ Contrasting DPS across Europe were selected.

A

Enteric CH₄

CH₄ emissions from enteric fermentation

В

Other CO₂ sources

CO₂ emissions from feed purchases, fertiliser purchased and energy use

С

Manure management CH₄

CH₄ emissions from manure management and storage

D

Field N₂O

Direct and Indirect emissions of N₂O from field management (i.e., grazing, fertiliser application, etc.)

E

Manure management N₂O

Direct and Indirect emissions of N₂O from manure management and storage

Fields

N losses from field management (i.e., grazing, manure application, mineral fertilisation, etc.)

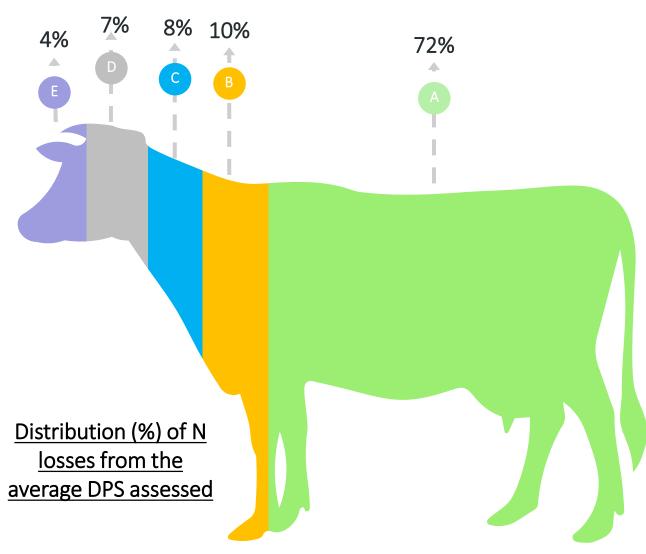
Housing

N losses from animal housing

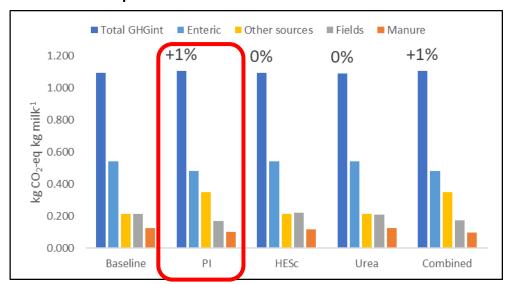
C

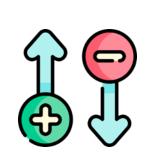
Storage

N losses from the storage from solid manure or slurry

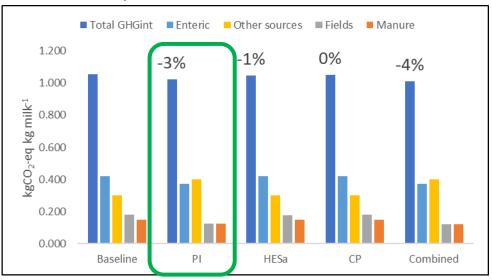

Silage

N losses derived from silage making

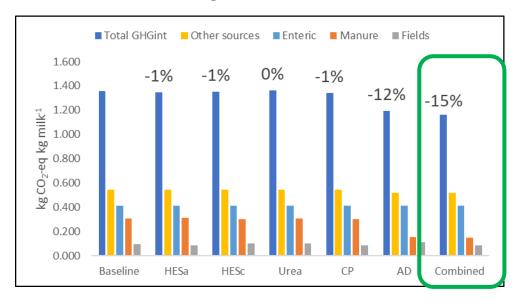

E

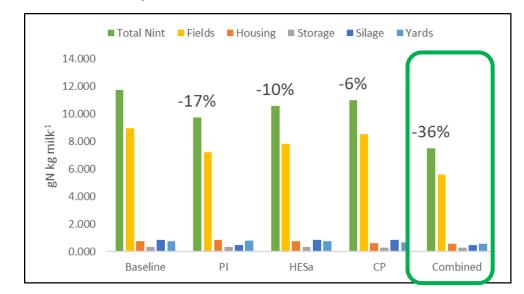

Yards

N losses from the walking yards of the animals



Atlantic European Conventional Semi-extensive DPS


Eastern European Conventional Semi-extensive DPS


PI: Lower F:C ratio to 60:40 and increase in milk production by 15%

The same mitigation option applied in different DPS could present contrasting effects

Mediterranean Conventional Intensive DPS

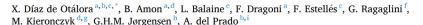
Eastern European Conventional Semi-extensive DPS

Combined: Combined application of multiple adapted mitigation measures

Adapted and combined application of context-specific mitigation measures derive in positive synergies

Agricultural Systems 216 (2024) 103902

Contents lists available at ScienceDirect


Agricultural Systems

journal homepage: www.elsevier.com/locate/agsy

Influence of farm diversity on nitrogen and greenhouse gas emission sources from key European dairy cattle systems: A step towards emission mitigation and nutrient circularity

- ^a Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), 14469 Potsdam, Germany
- ^b Basque Centre for Climate Change (BC3), 48940 Leioa, Spain
- ^c Institute of Animal Science and Technology (ICTA), Universitat Politècnica de València, 46022 Valencia, Spain
- d Faculty of Civil Engineering, Architecture and Environmental Engineering, University of Zielona Góra, 65-417 Zielona Góra, Poland
- e Teagasc, Agricultural Economics and Farm Surveys Department, Mellows Campus, H65 R718 Athenry, Co. Galway, Ireland
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milan, Italy
- ⁸ Institute of Technology and Life Sciences National Research Institute, Falenty, 3 Hrabska Ave, 05-090 Raszyn, Poland
- ^h NIBIO, Norwegian Institute of Bioeconomy Research, P.O. Box 34, N-8860 Tjøtta, Norway
- ¹ Basque Foundation for Science (Ikerbasque), 48940 Leioa, Spain

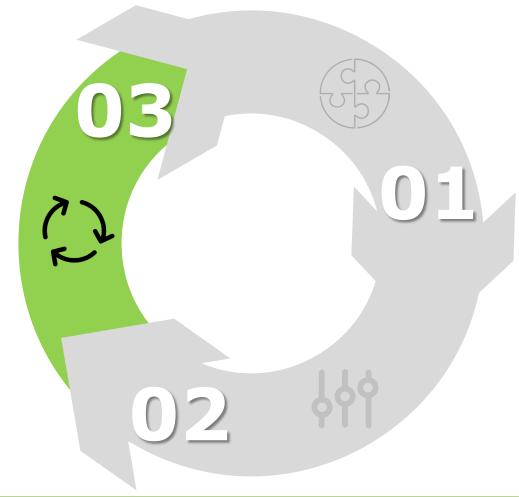
Agronomy for Sustainable Development (2024) 44:4 https://doi.org/10.1007/s13593-023-00940-6

RESEARCH ARTICLE

Modelling the effect of context-specific greenhouse gas and nitrogen emission mitigation options in key European dairy farming systems

Xabier Díaz de Otálora ^{1,2,3} • Agustín del Prado^{2,4} • Federico Dragoni¹ • Lorraine Balaine⁵ • Guillermo Pardo² • Wilfried Winiwarter^{6,7} • Anna Sandrucci⁸ • Giorgio Ragaglini⁸ • Tina Kabelitz¹ • Marek Kieronczyk^{7,9} • Grete Jørgensen¹⁰ • Fernando Estellés³ • Barbara Amon^{1,7}

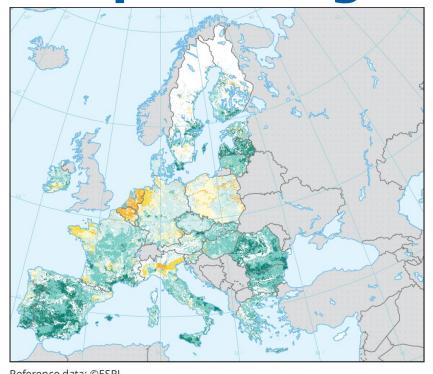
Accepted: 15 December 2023 / Published online: 10 January 2024 © The Author(s) 2024

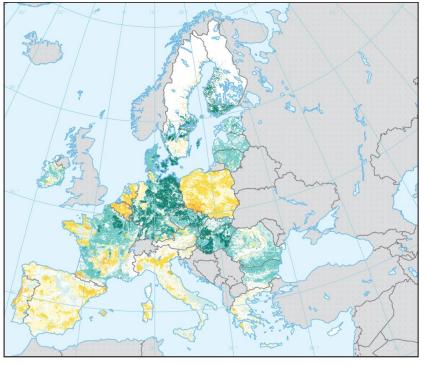


Integrated, circular and adapted approaches are needed

Circularity ()

Closing of carbon and nutrient cycles, protein self-sufficiency and improved manure nutrient utilization.


trade-offs Identify and synergies between sustainability indicators by applying multi-criteria assessment approaches.

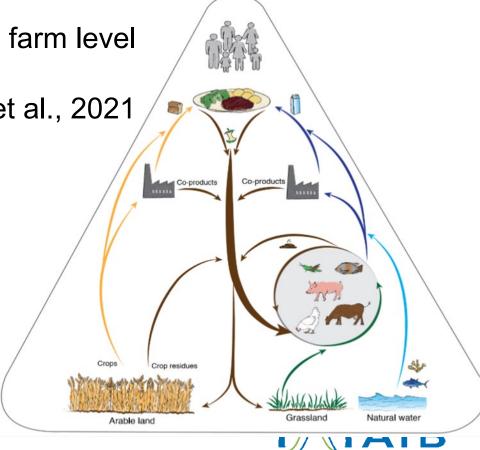


Assess effects of adapted mitigation measures, facilitating the application of context-specific policies



Circularity: closing nutrient cycles and optimizing dairy production

Reference data: ©ESRI


Circularity: closing nutrient cycles and optimizing dairy production

✓ Coupling and integration of dairy and crop systems at the farm level

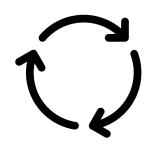
✓ Approach based on the 5 principles proposed by Muscat et al., 2021

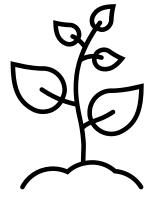
- ✓ Safeguarding
- ✓ Avoiding
- ✓ Prioritizing
- ✓ Recycling and reusing
- ✓ Entropy

✓ Ad-hoc indicators are needed to tackle circularity

Circularity: closing nutrient cycles and optimizing dairy production

DairyMix Circularity approach


Safeguarding **Avoiding** Recycling and reusing **Prioritizing** Entropy Edible Crop Nutrient Nutrient Nutrient Milk Manure Nutrient Nutrient Local By-product Renewable selfresidue protein Water loss efficiency wasted cycling production loss recycling origin use energy sufficiency returning conversion


Circularity: closing nutrient cycles and optimizing dairy production

The circularity dilemma

- Is a sustainable farm circular?
 - ✓ Benchmarking of dairy farms according to sustainability and circularity indicators.
 - ✓ Identification of trade-offs between sustainability and circularity.

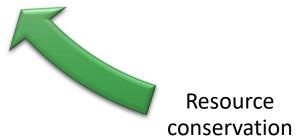
Integrate circularity in the sustainability assessments

What is next?

Precision livestock farming technologies

Nutrient management, recycling and circularity

Integrate circularity in the multicriteria analysis



Carbon sequestration and resilience

Enhance carbon sequestration in soils and pastures

estration esilience

Animal health and nutrition

Water consumption of dairy production.

Alternative feed

sources

Acknowledgements

aufgrund eines Beschlusses des Deutschen Bundestages

Towards a more sustainable dairy cattle sector by optimizing resources, adapting strategies, and promoting circularity

