Perspectives on further integration of dairy and arable crop production

EAAP Florence, September 3rd, 2024

Gert van Duinkerken

Take home messages

 Sustainable food systems require a well-balanced ratio between plant based and animal source foods

 There is an urgent need to increase the sustainability of both plant production and animal production

- within chains
- by connecting chains
- → towards more integrated plant-animal systems

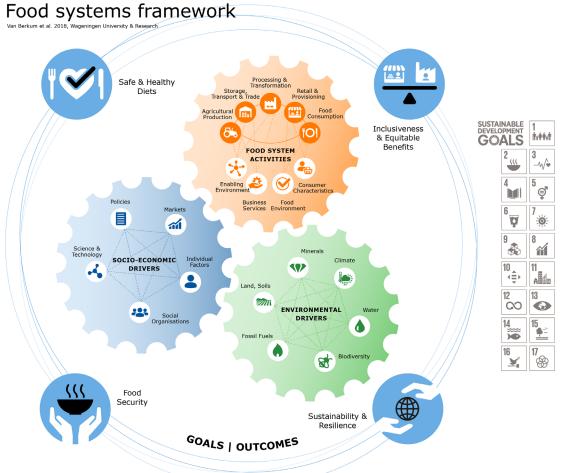
There are synergies as well as trade-offs related to more integrated plant-animal systems

What will be discussed?

- Sustainable food systems
 - Circularity & ratio plant-animal

- Sustainability increase
 - Vision Animal Task Force

- Integrated plant-animal systems
 - Categories
 - Synergies, trade-offs
 - Showcases



Sustainable food systems

Main connected domains

- 1. Food security
- 2. Safe & healthy diet
- 3. Fair distribution of costs and income
- 4. Environmental sustainability, biodiversity & resilience

Circularity as a key response to improve sustainability

- If livestock production systems only use feed products that are not in competition with humans → protein from animal source food is estimated at 21 g/capita/day (van Zanten, 2016)
- Optimal use of current resources unsuitable or undesired for human consumption in livestock diets → supply of 27 g human digestible protein per capita per day (Van Hal, 2020)
- Simon et al, 2024: 40:60 ratio of animal-sourced to plant-sourced proteins in circular food system

Sustainability increase

Vision Animal Task Force

Animal Task Force, 2024

ATF:

A European Public-Private Partnership and a leading body of expertise linking European industry and research providers for developing innovation in the livestock sector

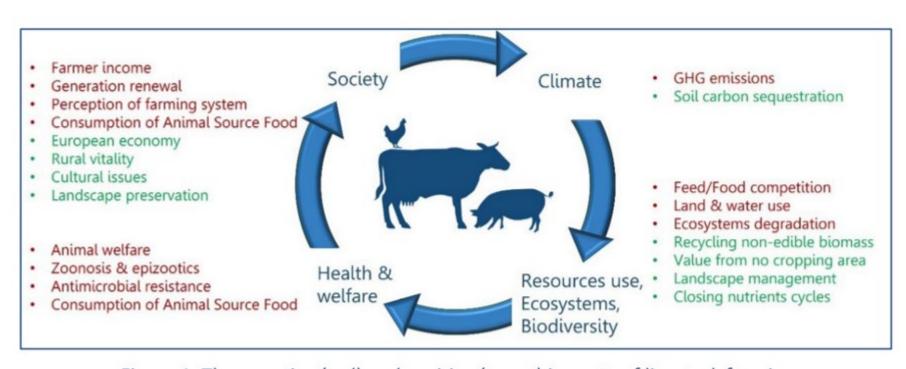


Figure 1. The negative (red) and positive (green) impacts of livestock farming

- "How can we increase the net social and environmental benefit of livestock, while ensuring the costs are distributed equitably?"
- "Redesign the place and role of livestock within sustainable agrifood systems"

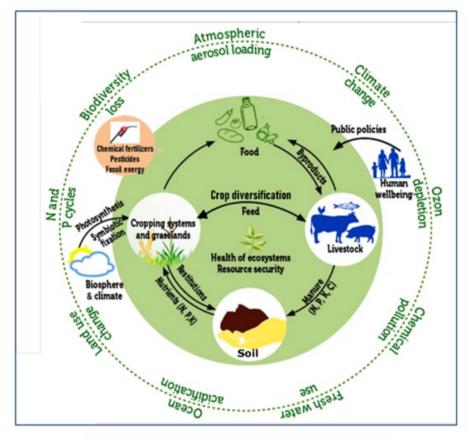


Figure 3. Role and place of livestock in balanced circular food production within planetary boundaries

Sustainability
domains to improve
European livestock
farming systems

SD1 Natural resources, climate and biodiversity

- Development of climate smart systems contributing to biodiversity restauration
- Optimising synergies between livestock and cropping systems with circular approaches
- · Efficient and safe utilisation of manure
- Support the role of livestock in organic farming

SD2 Animal health and welfare

- Considering cognitive and emotional capacities of animals to improve management practices
- Managing animal welfare as a prerequisite for animal health
- Management of immunity and microbiota for improved animal health
 - Towards responsible livestock systems that guarantee animal welfare and health

SD4 Livelihoods and economic growth

 Understand early development of phenotypes to build more robust and adaptable animals

The animal

as a system

- Characterise genetic resources to assess their potential and take advantage of additional diversity
- Towards multi-performing animals
- Improving research infrastructures towards innovation

SD3
Food and nutrition
security

- Drivers for the evolution of the livestock sector
- Diversity and diversification for supporting multifunctional farming
- Governance of the livestock sector to promote change over time
- Evaluation of livestock farming systems to help them progress

- Improving insights into consumption of animal source food and human health
- Management of nutritional, sanitary and sensory qualities of animal-source food
- Functional and bioactive properties of animal-source food and animal byproducts

Optimising synergies between livestock and cropping systems with circular approaches

SD1 Natural resources, climate and biodiversity

- Development of climate smart systems contributing to biodiversity restauration
- Optimising synergies between livestock and cropping systems with circular approaches

Efficient and safe utilisation of manure

 Support the role of livestock in organic farming

SD2 Animal health and welfare

- Considering cognitive and emotional capacities of animals to improve management practices
- Managing animal welfare as a prerequisite for animal health
- Management of immunity and microbiota for improved animal health
 - Towards responsible livestock systems that guarantee animal welfare and health

SD4 Livelihoods and economic growth

 Understand early development of phenotypes to build more robust and adaptable animals

The animal

as a system

- Characterise genetic resources to assess their potential and take advantage of additional diversity
- Towards multi-performing animals
- Improving research infrastructures towards innovation

SD3
Food and nutrition
security

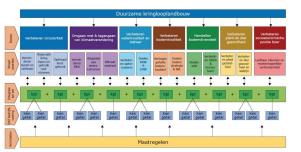
- Drivers for the evolution of the livestock sector
- Diversity and diversification for supporting multifunctional farming
- Governance of the livestock sector to promote change over time
- Evaluation of livestock farming systems to help them progress

- Improving insights into consumption of animal source food and human health
- Management of nutritional, sanitary and sensory qualities of animal-source food
- Functional and bioactive properties of animal-source food and animal byproducts

"Crop and livestock systems should become more integrated at multiple scales, e.g. on farm with arable and livestock rotations or at a regional/national scale through exchange of by-products and manures/slurries between livestock and arable farms."

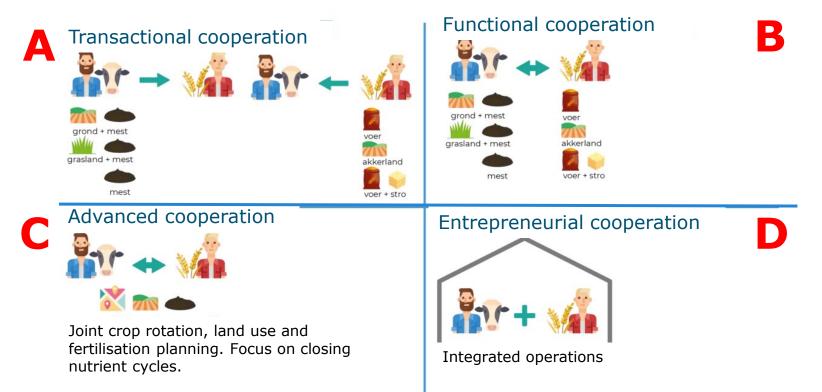
R&I priorities under "Optimising synergies between livestock and cropping systems with circular approaches"

- Identification and development of mixed crop-livestock systems adapted to local contexts
- New (protein rich) feed sources
- Upgrading the ability of livestock to utilise a diverse range of inedible biomass
- Addressing the wide geographical and regional specificities for the reconnection between livestock and crop farming
- Supporting efficient organisation of stakeholders and innovative public policies



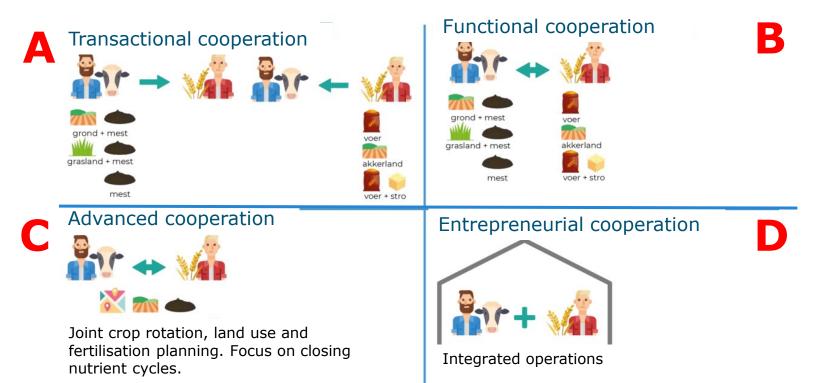
Sustainability increase: KPIs (Key Performance Indicators) play an important role

- Determine KPIs which relate to your sustainability goals
- Use KPIs
 - for monitoring and control
 - to evaluate synergies and trade-offs
- Connect recognition and reward mechanisms to the KPIs
- Use integral set of KPIs: combination of KPIs provides insight
- Be aware of the relevance of metrics



Integrated plant-animal systems

Categories of cooperation



In practice: even more complex....

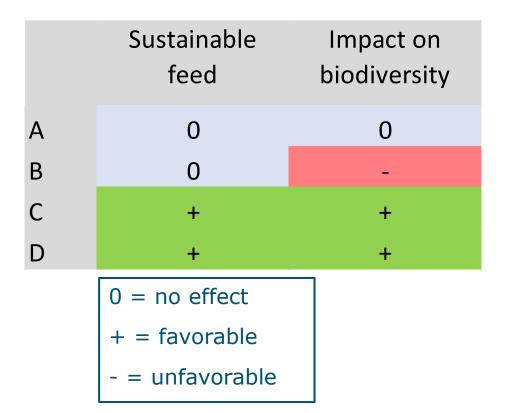
- Cooperations beyond 1-on-1 relations
- Networks of "land-users" within regions, or even across regions
- Manure trading between regions
- Feed (material) trading through feed business
- Broad range of crop producers and livestock producers
- Co-products by food (and biofuel) industry

Categories of cooperation

Effect of cooperation on sustainability goals

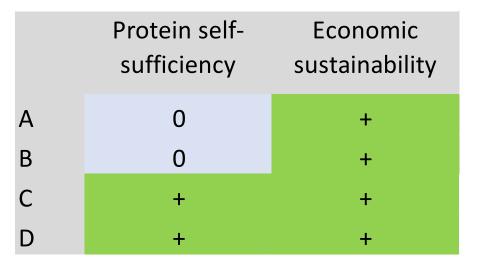
- CO2 footprint: methane, carbon sequestration soil, energy use
- Sustainable feed, impact on biodiversity
- Protein self-sufficiency
- Economic sustainability

CO2 footprint


	Methane	Carbon soil	CO2 abroad	Energy use
Α	0	0	?	+
В	0	0/-	-	+ / -
С	+ / -	0/-	+	+
D	+/-	0/-	+	+

0 = no effect
+ = favorable
- = unfavorable

- Less permanent grassland
- Risk of lower soil organic matter
- Less transport of manure and feed


Sustainable feed, impact on biodiversity

- More divers crop rotation
- Risk of more nutrient leaching
- More local feed, less feed imports
- Less permanent grassland
- Joint responsibility for soil structure and long-term soil health

Protein self-sufficiency, Economic sustainability

0 = no effect+ = favorable- = unfavorable

- Protein crops increase
- Lower feed protein purchase
- More "cash crops"
- Lower costs manure
- More flexibility

Two practical showcases

- 1. PAVEx project
 - Dairy farming arable farming collaboration

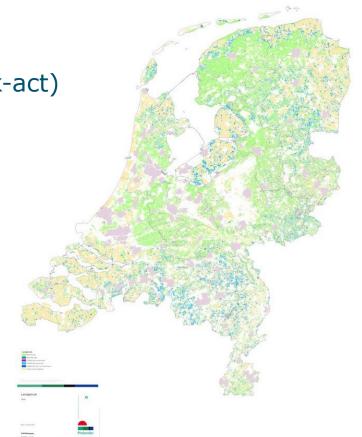
2. Biobased crops on dairy farms

Showcase 1: PAVEx

 Assessing collaborations between livestock farms and arable crop farms

 Focus on environmental sustainability and economic feasibility

In 6 different regions (the Netherlands)



Showcase 1: PAVEx

Deming-cycle applied (plan-do-check-act)

Active use of KPI's

Showcase 1: PAVEx, preliminary results

- Land exchange is the major basis for collaboration
- The role of grassland is changing (e.g., less permanent grassland)
- Location and culture determine the form of collaboration
- There is a great need for policies based on clear environmental goals
 → not policies based on measures
- Collaborators seek recognition from the government and chains for their contribution to achieving environmental goals
- Offers opportunities for optimization of crop rotation plans and fertilization plans based on a larger area

Showcase 2: Crops for biobased construction materials

In general:

- Suitable on dry soils → well developed rooting → soil quality improves
- Low input (fertilizers, crop protection, irrigation) → water quality, biodiversity
- Short chains: local production, processing, use
- Economic potential → embedded in carbon credit system

Regional biobased crops → Biobased meeting pavilion

Located at:

Agro innovation centre "De Marke"

The Netherlands

Take home messages (1)

- More integrated approaches of dairy and arable crop production can be shaped at both farm level and regional level
- More integration offers opportunities to increase ecological, economic and social sustainability of agricultural production
- Synergies and trade-offs need to be assessed and well-balanced
 - customized arrangements between collaborators
 - no generic solutions for integrated crop-dairy systems

Take home messages (2)

- Land-owners and land-users have a shared responsibility for environmental sustainability and long-term soil quality
- Crops for biobased economy offer new opportunities

gert.vanduinkerken@wur.nl

Thank you for your attention!

