

Potential of plants from Auvergne region

to reduce methane emissions and nitrogen excretion by dairy cows

M. Bouhafs¹, F. Anglard¹, F. Fournier², S. Guillaume³, T. Chabrillat³, S. Kerros³,

D. Macheboeuf¹, C. Martin¹

¹INRAE, UMR 1213 Herbivores, 63122 Saint-Genès-Champanelle, France

²INRAE, UE1414 Herbipôle, 63122 Saint-Genès-Champanelle, France

³Phytosynthèse, Département Technique Ruminants, 63200 Mozac, France

Context

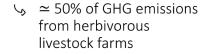
World action on methane to keep a 1.5°C future within reach

Global Methane Pledge:

-30% reduction in methane (2030/2020)

Fit for 55: reducing EU emissions by at least -55% by 2030

Social responsibility approaches in the milk and meat sectors



Enteric methane, specific to ruminants

Enteric Methane

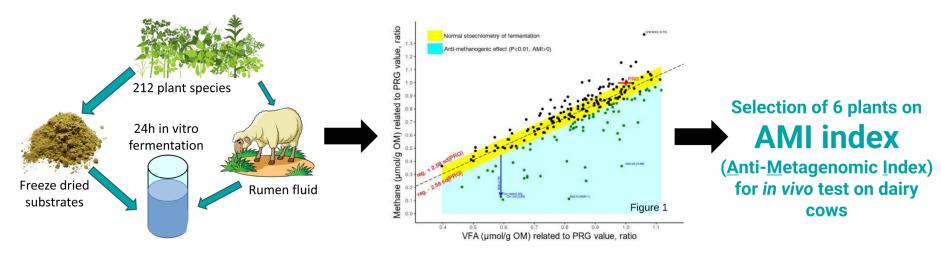
4 different ways of reduction

A multidisciplinary approach

Herd management

(CH4 selection)

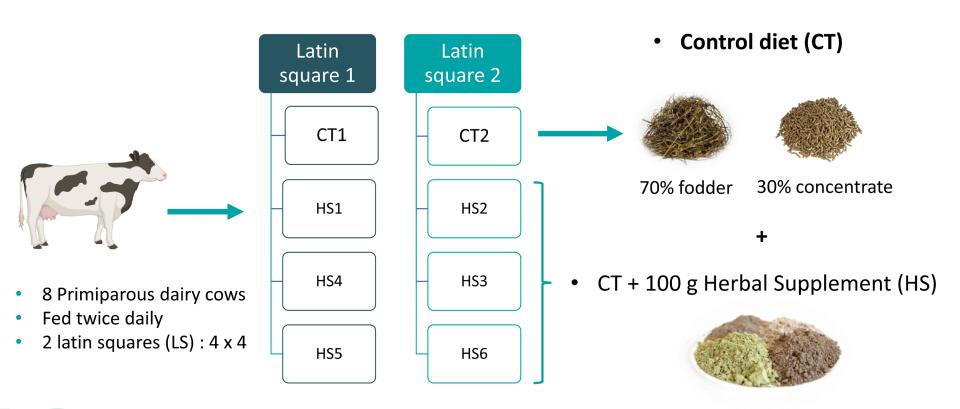
Potential of -50%



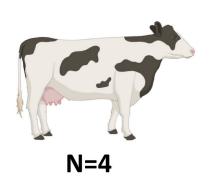
Objective

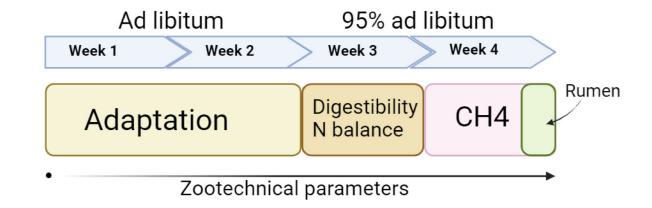
Reducing enteric methane emissions (CH4) and nitrogen (N) excretion by introducing local Auvergne plants into dairy cow diets

→ Plants were selected for their ability to reduce CH4 and N based on preliminary *in vitro* tests and for their richness in polyphenols (Macheboeuf et al., 2014)

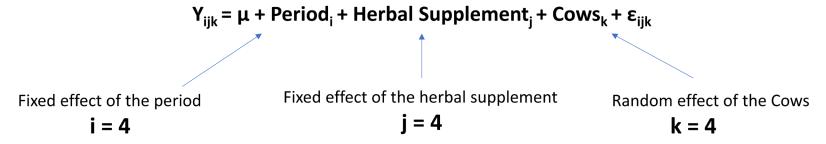


75th EAAP Congress, Florence, Italy


Materials and methods



Materials and methods



Materials and methods

- The two Latin squares were analyzed individually
- Statistical analyses were performed using ANOVA with the MIXED procedure of SAS
- Model:

- Kinetic analysis of CH4 emissions: Mixed ANOVA with repeated measures
- Model:

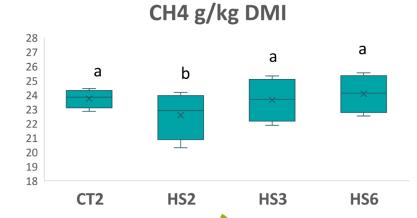
$$Y_{ijk} = \mu + Time_i + Herbal Supplement_j + Cows_k + (Time x Herbal Supplement)_{ij} + \epsilon ij_k$$

Multiple comparison test : Tukey-Kramer (p<0.05)

> Results on animal performances

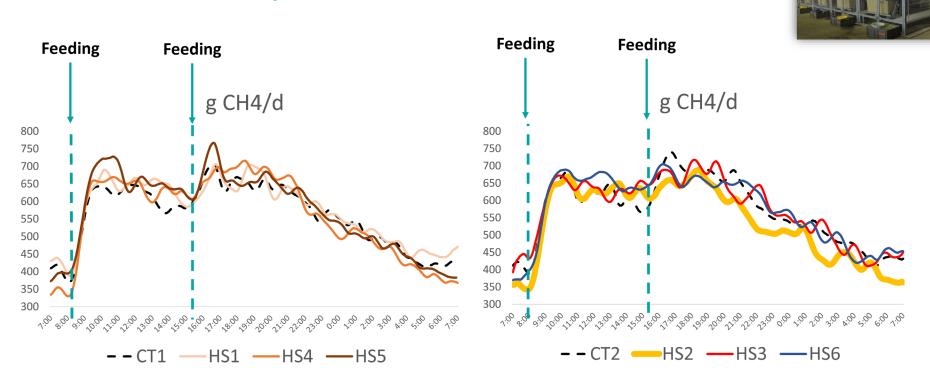
			Latin S	quare 1					Latin	Square	2	
	CT1	HS1	HS4	HS5	SEM	P≤	CT2	HS2	HS3	HS6	SEM	P≤
DMI (kg/d)	21.6	22.2	21.9	21.9	0.35	NS	20.9	20.4	21.2	20.9	0.86	NS
Milk (kg/d)	27.7 ^A	26.6 ^B	26.9 ^{AB}	27.3 ^{AB}	0.81	0.05	26.5	26.7	26.7	26.9	1.62	NS
Feed efficiency (kg milk/kg DMI)	1.28 ^A	1.20 ^C	1.22 ^{BC}	1.25 ^{AB}	0.033	0.001	1.27	1.31	1.26	1.29	0.071	NS

No significant effect of HS on animal performances Except HS1 which decreased milk production and feed efficiency

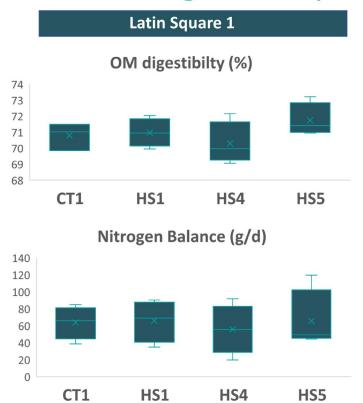


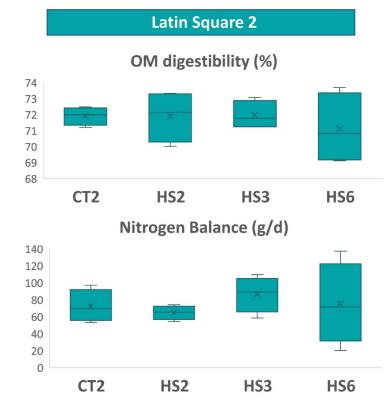
> Results on CH4 emissions

	Latin Square 1							Latin Square 2							
	CT1	HS1	HS4	HS5	SEM	P≤		CT2	HS2	HS3	HS6	SEM	P≤		
g CH4/d	495	485	475	489	25.2	NS		492	461	497	496	18.1	0.1		
g CH4/kg DMI	23.3	22.2	22.0	22.5	1.21	NS		23.7 ^A	22.6 <mark>B</mark>	23.6 ^A	24.1 ^A	0.57	0.001		
g CH4/kg FPCM	17.9	18.2	17.9	18.2	0.65	NS		18.3	17.3	18.4	18.4	0.60	NS		


HS2 decreased CH4 emissions : -7% in g/d -4% in g/DMI

> Results on daily kinetic of CH4 emissions




HS2 decreased CH4 emissions mainly after 2nd feeding

➤ Results on Digestibility and N balance

No effect of HS on nutrients digestibility and N balance

p. 10

Discussion

Overall effects: the 6 plants studied had few significant effects on the parameters measured on dairy primiparous cows \rightarrow \neq in vitro (Macheboeuf et al, 2014)

 HS1: decrease in feed efficiency related to a slight reduction of milk production

HS2: significant reduction in CH4 emissions by -7% in g/d to -4% in g/DMI particularly after pm feeding (up to -20%)

> Future recommandations

To validate HS2 effect on field condition

- Larger number of animals
- Other form of distribution (e.g., pellet)

To characterize the molecules in the plant responsible for their anti-CH4 activity

Optimization of sourcing and effective dose

THANK YOU FOR YOUR ATTENTION

> Results of ruminal parameters

			Latin	Square	1		Latin Square 2					
	CT1	HS1	HS4	HS5	SEM	P≤	CT2	HS2	HS3	HS6	SEM	P≤
Total VFA (mmol/L)	127	126	124	137	4.4	0.1	123	123	128	124	9.1	NS
Acetate (mmol/L)	87.2	86.2	86.2	93.8	3.18	NS	83.5	83.5	87.0	84.2	6.05	NS
Propionate (mmol/L)	22.7	23.7	22.0	24.7	0.96	NS	22.8	22.6	23.2	22.7	2.10	NS
Butyrate (mmol/L)	12.5	11.5	11.2	13.2	0.77	NS	11.5	12.0	13.1	12.3	0.82	NS
Total Protozoa (log ₁₀ /mL)	5.18	5.01	4.95	5.01	0.087	NS	5.01	5.14	5.09	5.05	0.092	NS

HS had no effect on ruminal parameters

-> except a tendency in total VFA increase for HS5

