

Servicio General de Apoyo a la Investigación - SAI Universidad Zaragoza

Does processing of the straw have an effect on methane production from feedlot beef cattle?

A. Arbaoui¹, G. Gonzalo², A. Belanche¹ and A. de Vega¹

¹Instituto Agroalimentario de Aragón, Universidad de Zaragoza-CITA, Miguel Servet 177, 50013 Zaragoza, Spain

² Servicio de Experimentación Animal. Universidad de Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain

Enteric methane from all ruminant species

Asia: 37%

S. America: 23%

Africa: 17% (FAOSTAT, 2020)

Europe: 10%

N. America: 9%

Oceania: 3%

Enteric CH₄ (ca. 3.5% of anthropogenic GHG)

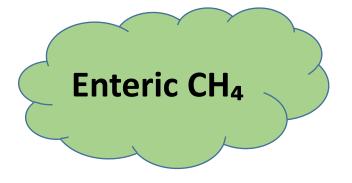
Annual enteric-methane emissions (CO₂-equiv; million tons) from cattle in Europe

Dairy: 81.1

Non-dairy: 101.1

(FAOSTAT, 2020)

Introduction


Million tons enteric CH₄/year from beef cattle in Western Europe

Grassland-based: 21.89

Mixed systems: 27.53 (Opio et al., 2013)

Feedlot: 0.73

Feedlot beef cattle

Loss of energy

2-12% of gross energy intake

(Johnson and Johnson, 1995)

Introduction

Strategies to reduce enteric CH₄ production

Additives promoting the synthesis of propionate (malate, fumarate, crotonate)

Use of tannins and saponins

Use of algae in the diet

Enteric CH₄

Stimulation of acetogenic bacteria

Use of linseed or rapeseed oils

Use of probiotics

Vaccination against methanogenic microorganisms

Defaunation of determined species of protozoa

Genetic selection of animals with a more efficient microbiome

Inclusion of different cereals in the diet

Manipulation of ration's particle size

Free choice feeding

Reduction of forage particle size

- Increases ruminal passage rate
- Decreases organic matter degradation in the rumen
- Shifts fermentation toward propionate production with less CH₄ production

(McAllister et al., 1996; Beauchemin et al., 2008, 2022)

Reduction of forage particle size

However...

...very few papers directly measuring CH₄ production in cattle fed forages either in the long or in the ground and pelleted form:

Hironaka et al. (1996)

Benchaar et al. (2001)

Alfalfa hay as unique ingredient

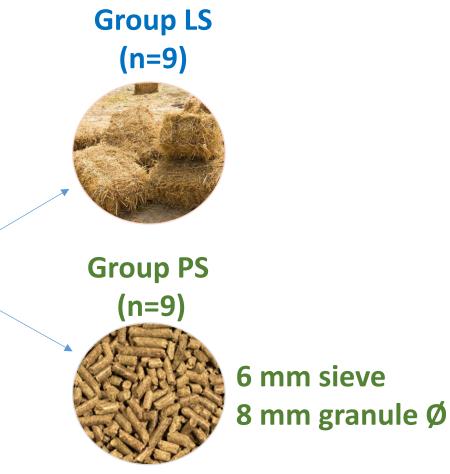
Energy loss as methane

Introduction

Feedlots

Effect on CH₄ production

Assess the effect of straw processing on methane production from feedlot cattle



18 cross-bred Montbéliarde males. Rumen cannulated and Individually housed

 $359 \pm 2.7 \text{ kg}$ $250 \pm 0.4 \text{ days}$

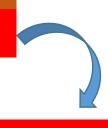
Ad libitum

14d adaptation and recovery from surgery 112d trial

 112d trial

 d0
 d28
 d56
 d84
 d112

Daily intake: Concentrate and straw



Concentrate offered at 0800 Straw offered at 0900, 1200 and 1800

LS

PS

14d adaptation and recovery from surgery 112d trial

112d trial

d49 d57

Digestibility

Offer of Cr-labelled concentrate Faeces sampling (0900 and 1700)

- Cr: labelled concentrates labelled concentrate refusals spot faeces samples
- DM, OM, CP and NDF: spot faeces samples refusals

 $4^{0}/_{00} Cr_{2}O_{3}$ (as fed)

14d adaptation and recovery from surgery 112d trial

112d trial

d58

d86

Rumen fluid

0*, 3, 6 and 9 h after concentrate offer

pH, VFA, lactid acid and NH₃

* Abundance of bacteria, methanogens, protozoa and anaerobic fungi

14d adaptation and recovery from surgery 112d trial

112d trial

d59

d87

Rumen gas

0, 4, 12 and 24 h after concentrate offer

CH₄ and CO₂ concentrations

Gas production for 6 min

Statistical analysis: PROC MIXED of SAS v. 9.4

- Final LW and ADG: treatment as fixed effect, and animal as random
 Covariated with initial LW and age
- Intake (straw and concentrate), digestibility and log-transformed microbial data: treatment as fixed effect and animal as random
 Digestibility covariated with OM intake
- Rumen variables: repeated measures
 treatment, sampling time within a day (repeated measure), sampling
 day and all interactions as fixed effects, and animal as random

Statistical analysis: PROC MIXED of SAS v. 9.4

 Abundance of total bacteria, methanogens, protozoa and anaerobic fungi: repeated measures

treatment, sampling day (repeated measure) and all interactions as fixed effects, and animal as random

Treatment (T)	LS	PS	SEM	P-value
ILW (kg)	361	363	10.8	0.82
FLW (kg)	497	512	10.2	0.50
ADG (kg/d)	1.51	1.64	0.104	0.78

LS: long straw

Treatment	LS	PS	SEM	P-value
Concentrate intake				
(kg/d)	7.74	8.07	0.620	0.61
(g/kg LW ^{0.75})	80.0	81.9	5.97	0.76
Straw intake				
(kg/d)	0.366	0.547	0.0984	0.09
(g/kg LW ^{0.75})	3.79	5.55	1.000	0.10
(% of total DM intake/d)	4.71	6.57	1.428	0.21
DMD	71.1	68.9	2.73	0.44
OMD	74.7	71.1	2.57	0.18
CPD	70.9	68.9	2.82	0.50
NDFD	45.5	42.1	8.38	0.69
DOMI				
(kg/d)	5.85	5.23	0.450	0.19
(g/kg LW ^{0.75})	60.4	53.0	4.37	0.12

LS: long straw

	LS	PS	SEM	P-value
% CH ₄	21.7	21.2	1.85	0.79
% CO ₂	62.0	64.1	2.45	0.40
L CH ₄ /h	8.79	8.49	1.303	0.82
L CO ₂ /h	26.7	26.7	4.98	1.00
L CH ₄ /d	211	210	29.9	0.98
L CO ₂ /d	648	663	123.3	0.90
L CH ₄ / kg Δ weight	157	150	32.2	0.85
$L CO_2 / kg \Delta$ weight	467	454	84.8	0.88

LS: long straw

	LS	PS	SEM	P-value
Bacteria	9.63	9.58	0.123	0.67
Methanogens	6.23	6.26	0.159	0.87
Protozoa	8.49	7.22	0.682	0.08
Anaerobic fungi	5.12	4.65	0.789	0.55

LS: long straw

	LS	PS	SEM	P-value
рН	6.43	5.97	0.208	0.04
Total VFA	109	125	10.0	0.14
Ammonia	43.8	74.2	25.04	0.24
Lactic acid	97.7	120.0	16.58	0.20
Acetate	47.6	42.7	4.32	0.28
Propionate	33.7	37.4	4.58	0.44
Butyrate	13.1	14.8	2.19	0.46
Iso-butyrate	1.24	0.98	0.131	0.06
Valerate	1.93	2.61	0.423	0.13
Iso-valerate	2.36	1.50	0.452	0.08

LS: long straw

Substitution of straw in the long form with a pelleted version does not seem to reduce CH₄ emissions from intensively reared beef cattle whereas it seems to increase the risk of acidosis.

The cost of straw processing would act against the profitability of the farms

