

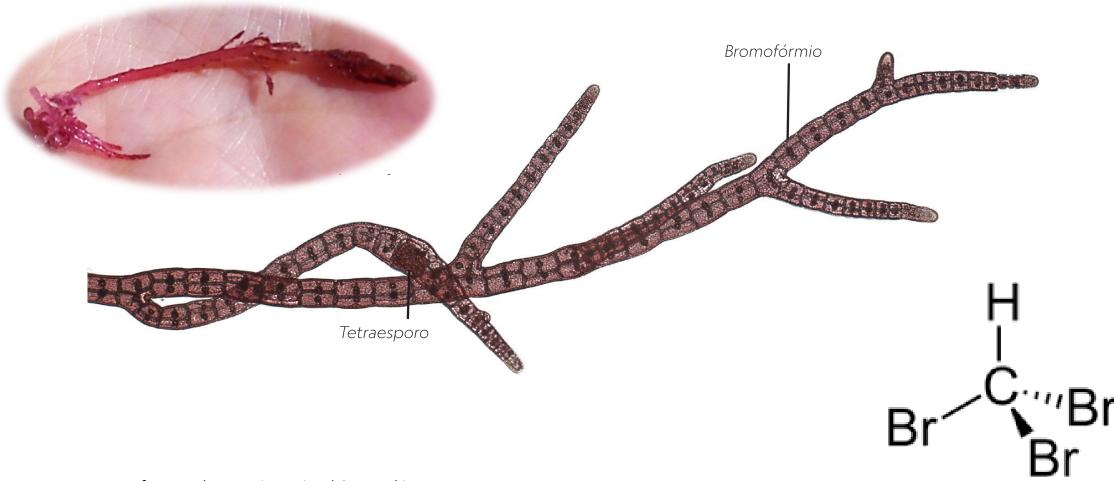
Effects on methane emissions and growth performance in beef cattle supplemented with oil macerate of Asparagopsis taxiformis.

Diana M. Soares*, S. Bernardino, I. Gama, N. Rodrigues, A. Oliveira, H. Ramos,

G. M. Marques,, J. Santos-Silva, R.J.B. Bessa, T. Domingos.

September 2024

*diana.soares@terraprima.pt



Asparagopsis taxiformis (Delile) Trevisan de Saint-Léon, 1845

Red macroalgae that contains high levels of bioactive substances capable of reducing CH₄ production in the rumen.

Bromoform CHBr₃

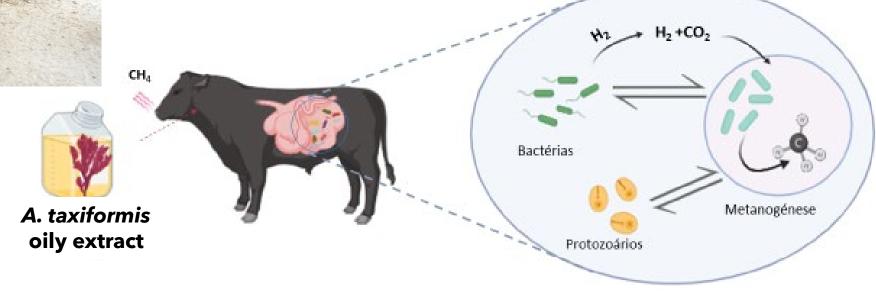
Fonte: Anyforms and *Pepe Brix, National Geographic Portugal*, CCMAR, UAIg

Methanogenesis

BROMOFORM

Halogenated compound presente in this algae that has an inhibitory action on archea methanogenic – blocking the production of CH₄

Necessary a processing method – easy, economical and provides the stability of Bromoform - **Highly volatile.**


Source: Glasson CR et al. Benefts and risks of including the bromoform containing seaweed asparagopsis in feed for the reduction of methane production from ruminants. 2022

Immersing algae biomass in vegetable oil: Macerate of Asparagopsis taxiformis = Bromoil as a supplement

We tested the inclusion of Bromoil in beef cattle diets providing **25 mg CHBr₃/kg DM**.

Ruminal microbiome

2 treatments: Diets

Control

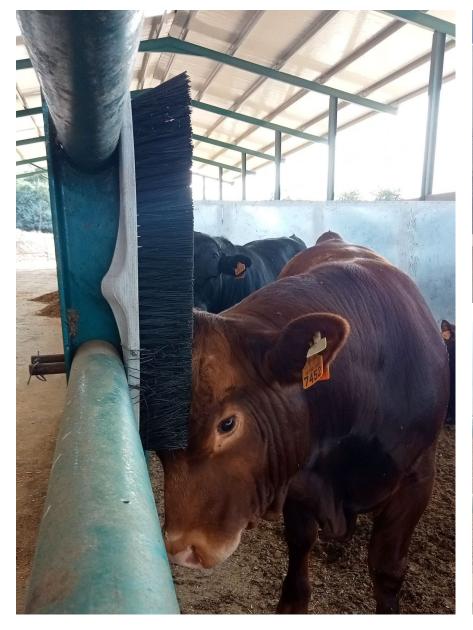
TMR

Concentrate
Maize Silage
Beer Drench
Straw

BrOil

TMR +
Oily extract of
A. taxiformis

Concentrate
Maize Silage
Beer Drench
Straw
BROMOIL


25 mg CHBr₃/kg DM

TMR: Total mixed ration

Material and Methods

- > 20 Crossbred Angus males
- ≥ 4 Pens 5 animals/pen
- Diets ad libitum
- \geq t = 2 months
- Weight Gain (weekly)
- Feed Intake (daily)
- ➤ Individual CH₄ and CO₂ emissions measured using GreenFeed® unit (who stayed with each group for 1 week and then changed).

Results Growth performance

CHBr₃ Intake (mg/day)

Feed Intake (kg/day)

DM Intake (kg/day)

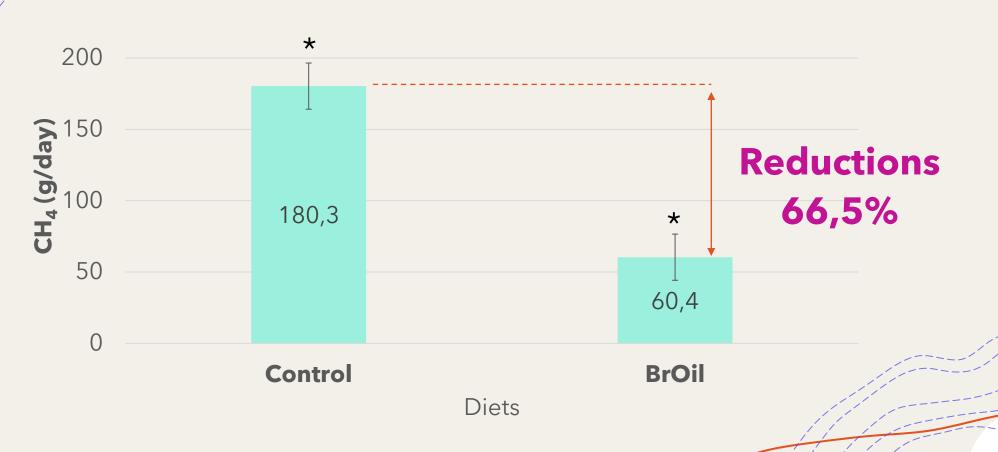
ADG (kg)

Feed CR

DM CR

Diet			
Control	BrOil	SEM	P-value
0	215.9	-	-
23.3	20.2	0.33	<0.001*
10.3	8.6	0.14	0.015*
1.34	1.23	0.106	0.523
18.37	17.45	1.747	0.715
8.12	7.45	0.751	0.539

ADG - Average daily weight gain CR - Conversion ratio


Results Carcass traits

	Diet			
	Control	BrOil	SEM	P-value
LSW(kg)	589	569	13.1	0.292
HCW(kg)	331	324	7.3	0.477
DP (%)	56.2	56.9	0.60	0.438

LSW - Live slaughter weight HCW - Hot carcass weight DP - Dressing percentage

Results CH4 Production

Methane Emissions

Results Life Cycle Analysis

	Diets		SEM	P - value
kg CO _{2eq} /Animal	Control	BrOil	JLIVI	r - varue
Rumen fermentation	271	<mark>91</mark>	24.4	0.04*
Feeds	146	134	2.1	0.06
Manure	33	28	8.0	0.06
Finishing period Carbon Footprint	448	<mark>253</mark>	27.9	0.04*

Results

Presence of CHBr₃ in meat and liver

- Analysed by GC-MS
- Not detected (zero)
- The animals were consumed.

Results

Rumen health

No significant lesions were found in the rumens of BrOil animals when compared to Control animals.

We also have results about

- + **Emissions:** in kg of DM Intake, Weight gain, ...
- + **Meat quality:** Tasting panel, Nutritional analysis, Fatty acids, Color,...
- + Health: Pathology and histology of the rumens.
- + % of fat, lean and bone in the carcass.

Short conclusions

CH₄ emissions were reduced by more than **66%** with just **0.0025%** of CHBr_{3.}

No traces of CHBr₃ were detected in the meat of the animals after slaughter.

Feed and DM intake was lower in the BrOil animals. There were no differences in any other growth indices.

Carbon Footprint of the BrOil diet was reduced by **44%** during the Finishing Period.

Further research is needed to ensure that Bromoil can be administered without adversely affecting animal health and productivity.

Fundação para a Ciência e a Tecnologia

Acknowledgements

- GreenBeef Project (LISBOA-01-0247-FEDER-047050)
- ★ ĆIISA (UIDB/00276/2020)
- + AL4AnimalS (LA/P/0059/2020)
- + Terraprima Agrícola Quinta da França (Covilhã, PT).
- + FCT (2022. 13385.BDANA) and (UI/BD/152817/2022).

