

Nitrogen use efficiency from beef fed different protein sources and a forage-based diet

Session 47: Nutrition management to reduce methane emission and environmental impact, Part 2

<u>C. Christodoulou¹</u>, K. E. Kliem¹, M. D. Auffret², D. J. Humphries¹, J. R. Newbold³, N. Davison¹, P. Kirton¹, L. Smith^{1,4}, S. Stergiadis¹ christos.christodoulou@reading.ac.uk

¹ University of Reading, School of Agriculture, Policy and Development, Earley gate, RG6 6EU Reading, United Kingdom

² Agrifirm, Booiebos 5, B-9031 Gent (Drongen), Belgium

³ Scotland's Rural College, Dairy Research & Innovation Centre, Barony Campus, Parkgate, DG1 3NE Dumfries, United Kingdom

⁴ Swedish University of Agricultural Sciences, Biosystem & teknologi, SE-234 22 Lomma, Sweden

Nitrogen

- Essential element for life and the conservation of biodiversity
- ➤ However,
 - Extensive use of N to increase crop and livestock productivity
 - N-cascade phenomenon Agriculture main contributor (78 %) (Sutton et al., 2011)
 - **Excreted** N from faeces and urine ($\bar{x} = 72 \%$ of N intake)
 - NO_3 (soil and water eutrophication), NH_3 , N_2O (urinary N is a main source from livestock systems)
- >Therefore,

Better nutritional management to improve N use efficiency and reduce N leaches (Calsamiglia et al., 2011; Djikstra et al., 2013)

Protein sources in ruminant rations

- ➤ Unsustainable protein sources (Pexas et al., 2023)
- Example is soya (Kebreab et al., 2016; Tallentire et al., 2018)
 - **❖** Land degradation (**Deforestation**)
 - **❖Water** use
 - Long distance supply chain (Transportation)
 - Policies/initiatives in action (UK soy manifesto)

- ➤ Local alternatives (Wägeli et al., 2015; Pexas et al., 2023)
- > Resource use efficiency
- > Low inputs
- > Reduce production cost
- ➤ Maintain or improve **production** and product quality

Brewers' spent grains

- ➤ Waste management / Resource use efficiency
- Rich in fibre and good protein source (Santos et al., 2003; del Rio et al., 2013)
- Could be used as alternative protein source
- ➤ Reduce reliance on imported feed

Field beans

- ➤ Alternative protein source
- Rich in starch content and good protein source (Dvořák et al., 2006)
- Reduce reliance on imported feed
- Antinutritive factors presented that should be considered (i.e., tannins, trypsin inhibitors, etc.) (Dvořák et al., 2006)

Pasture-based low-input systems

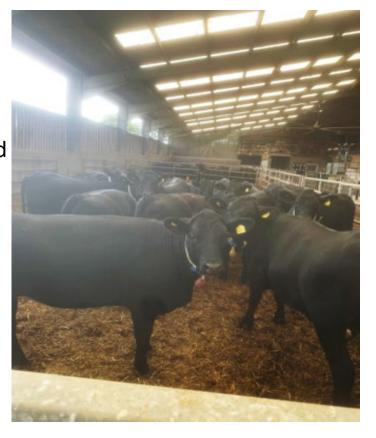
Boyal and Dixon, 2012. Animal 6, 748-762.
Clinquart et al., 2022. Animal 16, 100426.
Fraser et al., 2022. Animal 16, 100671.
Klopatek et al., 2022. J Anim Sci 100.
Pinheiro Machado Filho et al., 2021. Animals 11, 3494.
The state of food and agriculture, FAO, 2009. p. 166.

- ➤ Grassland comprise ≈26 % of worlds total land area and 80% of the agricultural land (FAO, 2009)
- Can reduce production costs (Pinheiro Machado Filho et al., 2021)
- Support livelihoods and economies and preserve and enhance biodiversity (Boval and Dixon, 2012; Fraser et al., 2022)
- ➤ Often preferred by consumers for their benefits related to animal health and welfare, and their more favourable nutritional profile (Clinquart et al., 2022; Klopatek et al., 2022)

Aim of this study

Assess the effect of different dietary protein sources (soya, SB; local brewers' spent grains, BSG; local field beans, BNS) and compared to a pasture-based low-input diet (GRA) on:

- ➤ Growth rates
- Nutrient intakes and digestibility
- ➤ Nitrogen use efficiency


Materials and Methods

- ➤ 4 treatments n = 8 growing beef (4 heifers and 4 steers) per treatment:
 - ✓ TMR including soya as the main protein source (SB); 64:36 F:C
 - ✓ TMR including local brewers' spent grains as the main protein source (BSG);
 64:36 F:C
 - ✓ TMR including local field beans as the main protein source (BNS); 64:36 F:C
 - ✓ Fresh-cut ryegrass-fed group 91:9 F:C (GRA)
- > Every week, for 16 weeks, 4 steers (one per treatment) were in respiration chambers
- ➤ GHG measurements, individual records of DMI, BW, and total collection of faeces and urine

Data and statistical analysis

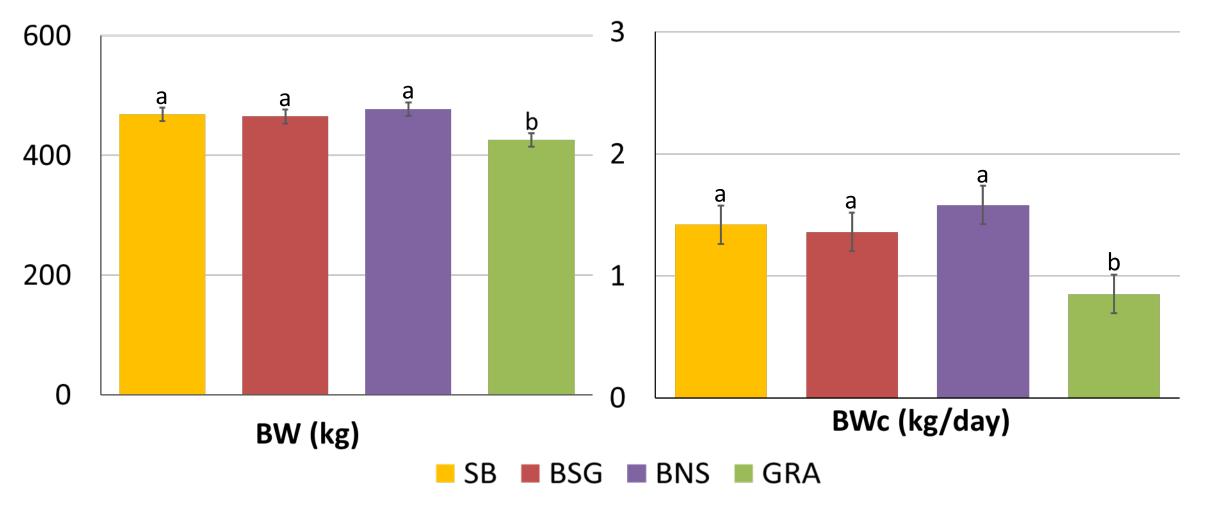
- **✓** IBM SPSS 29.0[®]
- ✓ Linear Mixed Model
- ✓ Fixed factors: Dietary Treatment (D), Period (P), Block, D × P
- ✓ Random factor: ((Animal ID)Treatment)
- ✓ Repeated measurement: Period
- ✓ Pairwise comparisons: Fisher's LSD test
- ✓ *P*<0.05

Feed and nutrient intakes (kg/day) and digestibility (kg/kg) from steers fed the experimental diets during the chamber measurement periods of the animal trial

	Dietary treatments ¹						Reading
	SB	BSG	BNS	GRA	-		
Item ²	(n=16)	(n=16)	(n=15)	(n=16)	SEM	<i>P</i> -value	
Feed and nutrient intake	es (kg/day)						
DM	5.71	5.84	5.67	5.14	0.36	0.544	
OM	5.41	5.56	5.41	4.67	0.47	0.558	
GE	96.3	105	96.5	92.7	8.65	0.771	
N	113	120	105	115	14.9	0.908	
NDF	2.38 ^b	2.71 ^{ab}	2.23 ^b	3.06ª	0.18	0.032	
ADF	1.49 ^b	1.59 ^b	1.32 ^b	1.94ª	0.12	0.015	
Oil	0.18 ^b	0.29 ^a	0.18^{b}	0.15 ^b	0.02	< 0.001	
EE	0.14 ^b	0.23ª	0.13 ^b	0.11 ^b	0.01	< 0.001	
Starch	1.18 ^b	1.15 ^b	1.46ª	-	0.01	0.035	
WSC	0.17 ^b	0.11 ^b	0.14 ^b	0.35ª	0.02	< 0.001	
Digestibility (kg/kg)							
DM	0.70^{a}	0.66 ^b	0.68ab	0.56 ^c	0.01	< 0.001	
OM	0.73^{a}	0.69ª	0.71 ^a	0.58 ^b	0.03	0.005	
DOMD	0.69ª	0.65ª	0.67ª	0.53 ^b	0.02	< 0.001	
GE (MJ/MJ)	0.67ª	0.64ª	0.65ª	0.51 ^b	0.02	< 0.001	
N	0.59	0.61	0.53	0.55	0.02	0.078	
NDF	0.64ª	0.59 ^{bc}	0.57 ^c	0.61 ^{ab}	0.01	0.012	
ADF	0.57	0.52	0.47	0.52	0.03	0.219	

¹ SB = Total mixed ratio (TMR) including soya as the main protein source; BSG = TMR including local brewers' spent grains as the main protein source; BNS = TMR including local field beans as the main protein source; GRA = diet including solely fresh-cut grass.

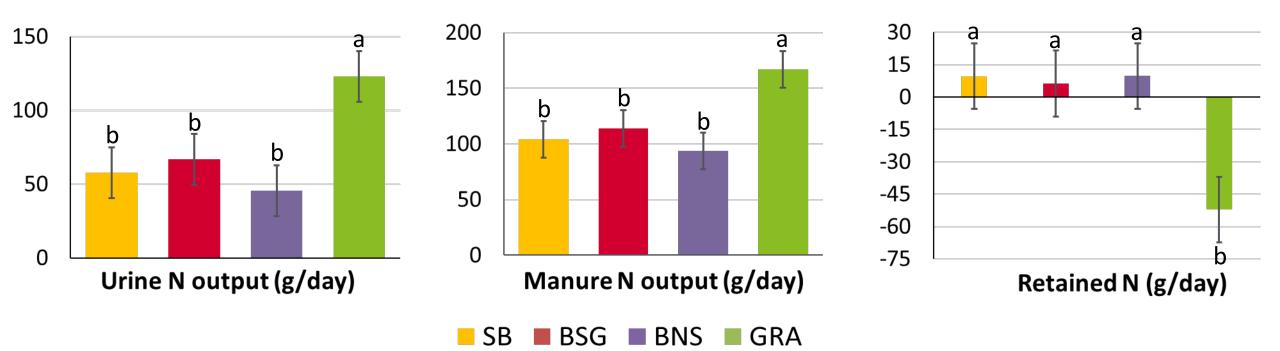
² DM = dry matter; OM = organic matter; N = nitrogen; NDF = neutral detergent fibre; ADF = acid detergent fibre; EE = ether extract; WSC = water soluble carbohydrates; DOMD = digestible OM in DM; GE = gross energy.



University of

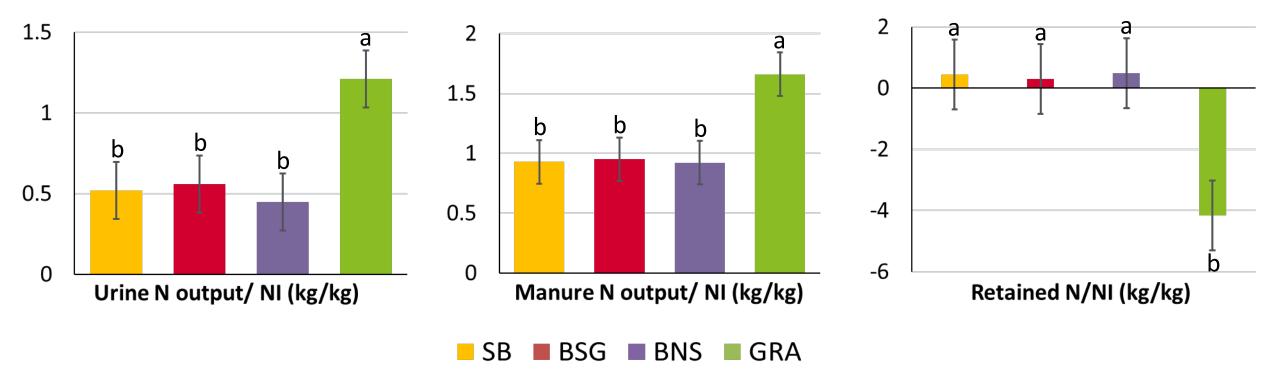
Body weight (BW) and Body weight change (BWc) Reading

SB = Total mixed ratio (TMR) including soya as the main protein source; BSG = TMR including local brewers' spent grains as the main protein source; BNS = TMR including local field beans as the main protein source; GRA = diet including solely fresh-cut grass; BW = Body weight; BWc = Body weight change.

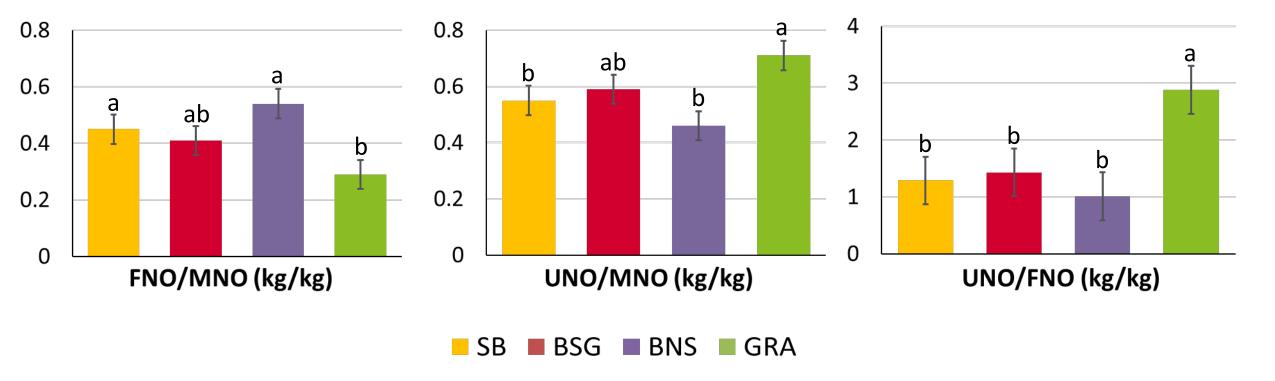


N intake and N outputs

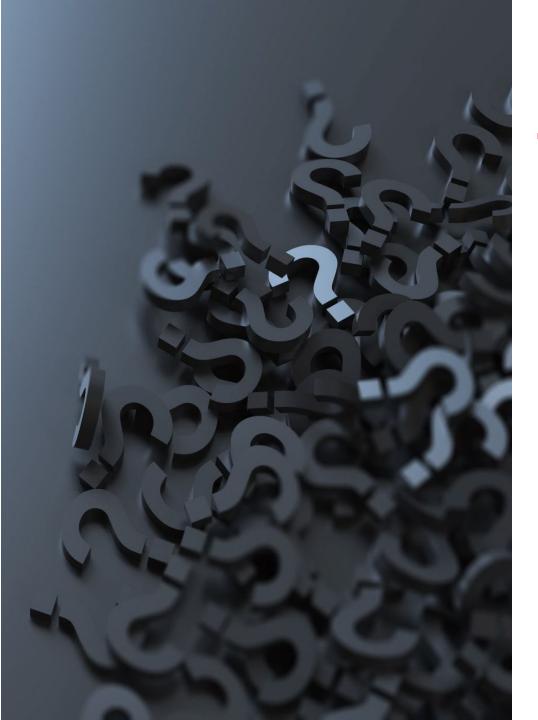
- \rightarrow NI (g/day) (SB = 113, BSG = 120, BNS = 105, GRA = 115; g/day; P=0.908)
- Faecal N output (SB = 45.8, BSG = 46.9, BNS = 48.2, GRA = 44.4; g/day; P=0.794)


SB = Total mixed ratio (TMR) including soya as the main protein source; BSG = TMR including local brewers' spent grains as the main protein source; BNS = TMR including local field beans as the main protein source; GRA = diet including solely fresh-cut grass; NI = N intake.

N utilisation


SB = Total mixed ratio (TMR) including soya as the main protein source; BSG = TMR including local brewers' spent grains as the main protein source; BNS = TMR including local field beans as the main protein source; GRA = diet including solely fresh-cut grass; NI = N intake.

N utilisation



SB = Total mixed ratio (TMR) including soya as the main protein source; BSG = TMR including local brewers' spent grains as the main protein source; BNS = TMR including local field beans as the main protein source; GRA = diet including solely fresh-cut grass; FNO = Faecal N output; UNO = Urinary N output; MNO = Manure N output.

Conclusions

- ➤ Replacing soya with local brewers' spent grains and local field beans in growing beef diets did not affect nitrogen intake.
- ➤ Urinary N output was higher for the low-input pasture-based diet which may be considered environmentally undesirable, given that urinary N is a main source of N₂O emissions from livestock systems.
- Consequently, the results of the present study indicate that pasture-based low-input diets could lead to higher N losses and reduced N utilisation than concentrate-based diets.

Acknowledgments

- The work was funded by the European Union, via the Horizon Europe funding programme for research and innovation and the project Facilitating Innovations for Resilient Livestock Farming Systems (Re-Livestock; 10159609)
- Special thanks to the technical staff at the Centre for Dairy Research (University of Reading, Reading, UK) for their technical contributions and animal care during the animal trial
- The authors gratefully acknowledge Technical Services staff within the School of Agriculture, Policy and Development at the University of Reading, and particularly Richard Pilgrim, for technical support and assistance in this work

Thank you for your attention