

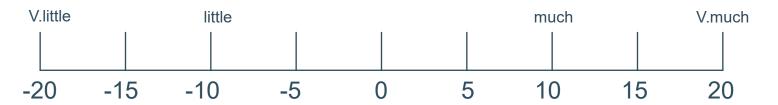
Predicting show jumping performance in Belgian Warmbloods using combinations of early life jumping traits

Léa Chapard, R. Meyermans, W. Gorssen, K. Hooyberghs, N. Aerts, N. Buys and S. Janssens *Center for Animal Breeding and Genetics, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium*

Session 48: "Horse genetics and genomics"

- Breeding goal: To breed successful show jumping horses
- Genetic evaluation for show jumping performance:
 - Low heritability (h²=0.12, Chapard et al., 2023)
 - Competition records available late in life

■ Ø Generation interval, we genetic progress of the population


How can we select for show jumping performance from an earlier age?

The BWP linear scoring scheme for early life jumping traits

Assess horses' jumping capacity freely (FJ) or under saddle (JS) at early age

Jumping

(7 traits)

- Scope
- Take-off (power/quickness)
- Technique of forelegs
- Technique of back
- Technique of haunches
- Attitude (willingness)
- Carefulness

Canter

(4 traits)

- Stride length
- Impulsion
- Elasticity
- Balance

Early life jumping traits and show jumping performance

- Early life jumping traits (ELJ) are:
 - Heritable
 - Genetically correlated with show jumping performance
 - Promising proxies for show jumping performance

Journal of Animal Breeding and Genetics	M. C.
--	-------

ORIGINAL ARTICLE | © Open Access | © (i)

Early life jumping traits: Are they good proxies for success in show jumping competitions in Belgian warmblood horses?

Léa Chapard ☑, Roel Meyermans, Wim Gorssen, Katrijn Hooyberghs, Inge Meurrens, Stefaan De Smet,

First published: 26 October 2023 | https://doi.org/10.1111/jbg.12834

	Free jumping		Jumpir	ng under saddle
	h²	r _q	h²	r _q
Scope	0.30	0.63	0.18	0.56
Take-off (power/quickness)	0.23	0.56	0.13	0.54
Technique of forelegs	0.18	0.49	0.11	0.49
Technique of back	0.16	0.44	0.14	0.49
Technique of haunches	0.21	0.56	0.18	0.49
Attitude/willingness	0.05	0.37	0.07	0.40
Carefulness	0.13	0.48	0.09	0.58
Stride length	0.18	0.51	0.27	0.49
Impulsion	0.23	0.49	0.23	0.55
Elasticity	0.11	0.48	0.16	0.47
Balance	0.18	0.53	0.19	0.45

How to optimally combine proxies?

Little is known on how to optimally combine several proxies to accurately predict genetic merit
for a complex trait

Show jumping performance is a complex trait

ELJ traits are promising proxies for show jumping performance

Research objective: To find a suitable method to identify an optimal combination of ELJ traits to predict genetic merit for show jumping performance

ELJ dataset

	Animal ID	Scope	 Elasticity of canter
	1	5	 10
٨	2	0	 0
	3	0	 -5
4	4	10	 5
	5	15	 5

EBVs

Animal ID	EBV show jumping performance
1	1.32
2	-0.63
4	6.62

Combined dataset

Animal ID	Scope	Elasticity of canter	EBV show jumping performance
1	5	 10	1.32
2	0	 0	-0.63
4	10	 5	6.62

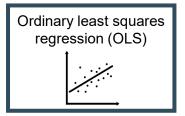
Methodology

1. Combine **ELJ dataset** (FJ or JS) and dataset of **EBVs** for show jumping performance into a **combined** dataset

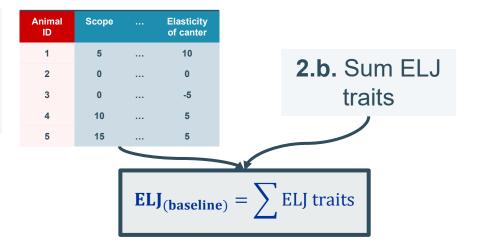
ELJ dataset

	Animal ID	Scope	Elasticity of canter
Γ	1	5	 10
L	2	0	 0
Ι	3	0	 -5
Ł	4	10	 5
Ţ	5	15	 5

EBVs


Animal ID	EBV show jumping performance
1	1.32
2	-0.63
4	6.62

Methodology


1. Combine **ELJ dataset** (FJ or JS) and dataset of **EBVs** for show jumping performance into a **combined** dataset

Combined dataset

Animal ID	Scope	Elasticity of canter	EBV show jumping performance
1	5	 10	1.32
2	0	 0	-0.63
4	10	 5	6.62

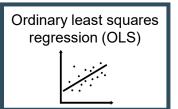
2.a. Use OLS method on combined dataset to regressELJ traits onto EBVs

EBVs = f(ELJ traits)

Methodology

ELJ dataset

Animal ID	Scope	Elasticity of canter
1	5	 10
2	0	 0
3	0	 -5
4	10	 5
5	15	 5


EBVs

Animal ID	EBV show jumping performance
1	1.32
2	-0.63
4	6.62

1. Combine **ELJ dataset** (FJ or JS) and dataset of **EBVs** for show jumping performance into a **combined** dataset

Combined dataset

Animal ID	Scope	Elasticity of canter	EBV show jumping performance
1	5	 10	1.32
2	0	 0	-0.63
4	10	 5	6.62

2.a. Use OLS method on combined dataset to regressELJ traits onto EBVs

Animal ID	Scope	 Elasticity of canter
1	5	 10
2	0	 0
3	0	 -5
4	10	 5
5	15	 5
	•	

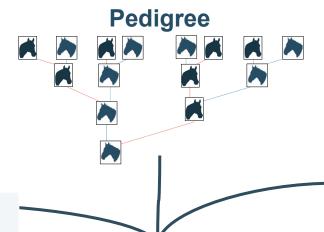
2.b. Sum ELJ traits

$$EBVs = f(ELJ traits)$$

Animal ID	Scope	Take-off	Impulsion	Elasticity of canter	ELJ _(baseline)	ELJ _(OLS)
1	5	5	 10	10	80	7.24
2	0	5	 0	0	20	6.97
3	0	0	 0	-5	-5	6.72
4	10	5	 5	5	95	7.42
5	15	15	 15	5	110	7.76

Calculate summarized ELJ traits using models obtained in 2.a. and
 2.b. on ELJ dataset

 $ELJ_{(baseline)} = \sum_{i} ELJ \text{ traits}$



Methodology

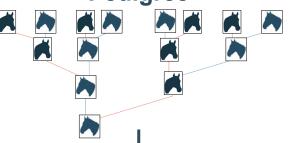
Summarized ELJ dataset

Animal ID	Sex	Age	Contemporary group	ELJ _(baseline)	ELJ _(OLS)
1	2	2	1	80	7.24
2	1	3	1	20	6.97
3	1	4	2	-5	6.72
4	1	3	3	95	7.42
5	2	5	3	110	7.76

4. Estimation of **h**² for summarized ELJ traits and their **genetic correlations with show jumping performance** using remlf90 program

Animal ID	Sex	Age	Rider	Show jumping performance
1	1	6	1	114.40
1	1	7	2	126.30
15	2	12	2	142.70

Computation of EBVs


Methodology

Summarized ELJ dataset

Animal ID	Sex	Age	Contemporary group	ELJ _(baseline)	ELJ _(OLS)
1	2	2	1	80	7.24
2	1	3	1	20	6.97
3	1	4	2	-5	6.72
4	1	3	3	95	7.42
5	2	5	3	110	7.76

4. Estimation of **h**² for summarized ELJ traits and their **genetic correlations with show jumping performance** using remlf90 program

Pedigree

Computation of EBVs

Validation

5.b. Computation of Spearman's rank correlations between EBVs for AFH obtained with the full dataset and those obtained with the masked dataset

Estimation of **EBV accuracies** obtained with the masked dataset

Full competition dataset

Animal ID	Sex	Age	Rider	Show jumping performance
1	1	6	1	114.40
1	1	7	2	126.30
15	2	12	2	142.70

Validation

5.a. Competition results of horses with ELJ scores are masked

Masked competition dataset

Animal ID	Sex	Age	Rider	Show jumping performance
1	1	6	1	NA
1	1	7	2	NA
15	2	12	2	142.70

- Number of horses that also have an EBV for show jumping performance and no missing scores:
 - 1190 FJ horses
 - 1502 JS horses

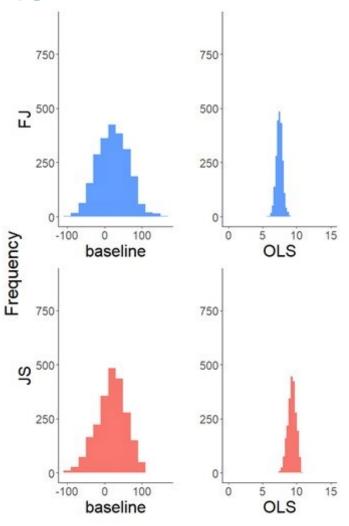
 Trait "Balance" removed from analyses because missing for most horses

	FJ	JS
n horses	2326	2273
Age		
2	138	0
3	2089	0
4	83	118
5	16	2058
6	0	97
Sex		
Male	808	1115
Female	1518	1158

OLS regressions on FJ and JS datasets

 Magnitude of regression coefficients in absolute terms varied from 0.005 to 0.083

 Magnitude of regression coefficients differed between FJ and JS


	Regressior	n coefficient
	FJ	JS
Intercept	7.509 (0.142)	8.896 (0.111)
Scope	0.048 (0.028)	-0.005 (0.023)
Take-off (power/quickness)	-0.029 (0.032)	0.020 (0.027)
Technique of forelegs	0.031 (0.021)	0.021 (0.022)
Technique of back	-0.016 (0.023)	0.017 (0.021)
Technique of haunches	0.019 (0.025)	-0.011 (0.022)
Attitude/willingness	-0.083 (0.024)	0.036 (0.020)
Carefulness	0.018 (0.028)	0.039 (0.022)
Stride length	0.029 (0.027)	0.063 (0.021)
Impulsion	0.009 (0.032)	0.005 (0.024)
Elasticity	0.008 (0.027)	-0.023 (0.020)

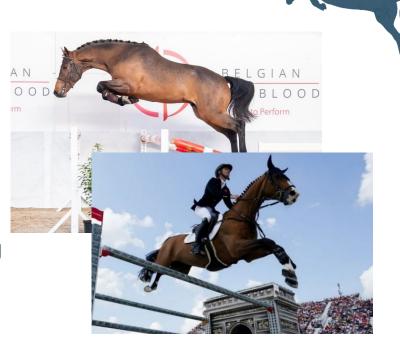
Summarized early life jumping traits

	Mean _(sd)	Min	Median	Max	h²	r _g with AFH
ELJ _(FJ,baseline)	24.52 (40.98)	-105.00	25.00	170.00	0.25	0.52
ELJ _(FJ,OLS)	7.49 (0.47)	5.46	7.49	9.72	0.18	0.74
ELJ _(JS,baseline)			25.00	115.00	0.15	0.52
ELJ _(JS,OLS)	9.31 (0.61)	6.87	9.34	10.89	0.14	0.75

- Summarized ELJ traits were:
 - Lowly to moderately heritable
 - Moderately to highly genetically correlated with show jumping performance

		Mean EBV
	Spearman	accuracy
AFH_ELJ _(FJ,baseline)	0.89	0.61
AFH_ELJ _(FJ,OLS)	0.76	0.58
AFH_ELJ _(JS,baseline)	0.82	0.59
AFH_ELJ _(JS,OLS)	0.81	0.58

- Spearman rank correlations were high (0.76-0.89)
- EBV accuracies ranged from 0.58 to 0.61
- Model using the "baseline" methodology performed better than the one using OLS regression for FJ
- No differences between methodologies for JS



Conclusion

- Summarized ELJ traits:
 - Are heritable and moderately to highly genetically correlated with show jumping performance
- Model using the "baseline" methodology performs better for FJ than the ones using OLS regression but no differences for JS
- Promising method to find an optimal combination of proxies to predict genetic merit for a trait of interest

Next step:

- Test other predictive modelling methods to find an optimal combination of ELJ traits to predict genetic merit for show jumping performance
- Compare efficiency of our model with a reduced number of traits with a multi-trait model

Acknowledgments

Data providers

Computing resources and services

Funding

Travel grant ID: K1AG424N

Thank you for your attention

