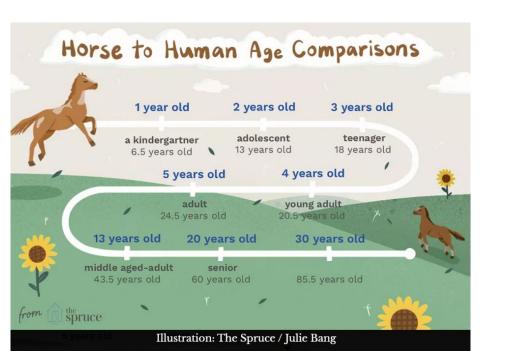


From fertility to longevity and climate adaptability: genetics of fitness traits in horses

Cristina Sartori, Enrico Mancin, Eugenio Rulli, Angelica Oian, Guido Gomez Proto & Roberto Mantovani

Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padua; cristina.sartori@unipd.it

Intro: fitness traits in horses



Horses have a long productive life → many moneys are invested

Longer-lived animals \rightarrow more desirable to breeders:

- less prone to contracting diseases → reduce replacement costs
- good reproductive ability → regular fertility, good annual foal productivity

Intro: fitness traits in horses

Horses have a long productive life → many moneys are invested

Longer-lived animals → more desirable to breeders:

- less prone to contracting diseases → reduce replacement costs
- good reproductive ability → regular fertility, good annual foal productivity

...but

Horses show a low reproductive capacity → fertility is of great economic importance in equine industry

...but

- Fertility not accounted for in horse breeding programs → not crucial for the development of leisure, sport, work, or meat
- Few studies on estimating genetic components of fertility

Intro: fitness traits in horses

Analysis of fitness traits is not an easy job:

DOH!

Longevity

- Records of culling and death are rarely available for analytical purposes
- It should be not a simply measure of career length but it should account for the animal ability to avoid voluntary culling by breeders \rightarrow functional longevity
- Ongoing careers should be considered → censored animals

Fertility

- Influenced by many environmental and management factors: method of insemination, season, age, racing activity when present → estimation of genetic parameters is challenging
- **Inbreeding** → inbreeding depression
- Possible influence of **genotype by environment interaction** (GxE) \rightarrow re-ranking of individual performances

Relationships with traits under selection (e.g., morphology) should be considered

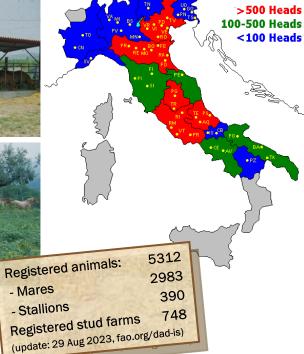


Aim of the study

To estimate:

- genetic parameters for fitness traits in Italian Heavy Draught Horse breed: functional longevity, lifetime fertility rate, foaling event (this latter also including GxE)
- **Genetic correlations** among fitness traits
- Genetic correlations with **morphological traits** used for selection
- Multi-trait response to selection

Study subject: Italian Heavy Draught Horse (IHDH)


Local breed (Italy)
Dual purpose: meat & draught

IHDH is bred in different **areas** (North, Centre, South) & under different **rearing systems** (Stable, Semi-feral, Feral)

Selection aims:

- Rapid Draught for Agriculture, as in the past
- Activities of Holidays Farms
- Meat Production

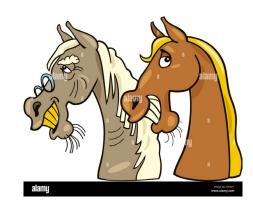
Longevity:

Editing of mares' careers (e.g., animals not more in herd-book due to selling, stoled, disappeared)

Adaptation of data for the following *fixed* effects:

Environmental unit* – Birth Year (EU-BY, 163 levels)

Quintiles of Lifetime fertility within EU-BY in 5 year period (5 levels)


Age at first foaling (3 or 4 years)

$$Y = \mu + fixed + a + e$$

2566 obs., 2566 mares, 757 censored (30%), 6786 animals in pedigree

220,000 iteration of Gibbs sampler (Gibbsf90+;Misztal et al., 2014); burn-in: 20,000 iterations; thinning: each 100 samples (2,000 chains for posterior analysis)

Posterior distribution analysis (POSTGIBBSF90 Misztal et al., 2008) → the same for all traits

*Environmental units

(geographical region by stud system):

- 1. North Italy, Stable
- 2. Centre-South Italy, Stable
- 3. North Italy, Feral
- 4. North-Centre Italy, Feral
- 5. South Italy, Feral
- 6. North-Centre, Semi-feral
- 7. South, Semi-feral

Fertility:

Lifetime foaling rate (LFR):

the actual or estimate of foal production at the 6th reproductive season on the basis of the age at first foaling and the previous foal produced after 3, 4 or 5 reproductive seasons

Fixed effects: Environmental unit*-Birth Year (163 levels), age at first foaling (3 or 4 years)

$$Y = \mu + fixed + a + e$$

3823 obs., 3823 mares, 8172 animals in pedigree

*Environmental units

(geographical region by stud system):

- 1. North Italy, Stable
- 2. Centre-South Italy, Stable
- 3. North Italy, Feral
- 4. North-Centre Italy, Feral
- 5. South Italy, Feral
- 6. North-Centre, Semi-feral
- 7. South, Semi-feral

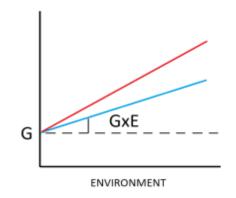
Fertility:

Foaling event: 1 successful (81%); o elsewhere (19%; e.g., absence of pregnancy 16%, abortion 3%);

Fixed effects: Environmental unit-Birth Year (163 levels), age at foaling (cov), Year (30 levels), Inbreeding (7 classes), THI at conception (cov)*

Single-trait threshold animal models:

No THI included:


$$Y = \mu + fixed + a + Pe + e$$

THI as just environmental covariate:

$$Y = \mu + fixed + \sum_{k=0,1} \phi_0 + a + Pe + e$$

• THI also in GxE interaction (reaction norm model):

$$Y = \mu + fixed + \sum_{k=0,1} \phi_0 + \sum_{k=0,1} \phi_0 a + Pe + e$$

22318 foaling events in 30 years, 3308 mares, 7697 animals in pedigree

*THI at conception

11 to 12 months (averaged) before the foaling event Standardized as 1_{st} order Legendre Polynomial $(\sum_{k=0,1} \phi_0)$

Data obtained from OpenStreetMap (https://openstreetmap.org) & NASA weather stations (https://power.larc.nasa.gov)

Linear type traits:

1 to 5 scale, including half points
Scored at 6 months → 11 traits, 5 of which in total
selection index → (Head size & expression; temperament;
fleshiness; fore diameters; rear diameters)

Fixed effects: environmental unit of stud groups-Year (163 levels); sex (2 levels); age of foal at scoring (9 classes); age of mare at scoring (5 classes);

$$Y = \mu + fixed + a + e$$

16996 obs., 16996 foals, 23614 animals in pedigree

Notes:

Type traits also scored at **30 months** (14 traits)
4 new type traits & BCS (PSRN funding, see Mancin et al., 2021 EAAP congress)

(Folla et al 2019, Livest Sci 219, 91-96; Folla et al 2020, Animals 10(6), 1099)

	EAVY DRAUGH r linear type evalua		DERS ASSOCIATION Stallions
Date:/ Name:	SB id _		Microchip:
	ex: Birth date:		
Sire: Name SB id _			SB id
Coat of Foal:			
Head			
Fore It		Fore rt	
Rear It.		Rearrt	
Owner:		Owne	er ID Code:
LINEAR TYPE TRAIT EVALUATION	N Score		BODY MEASURES
 Head size and Expression 		Withers	
2 Temperament		height	
3 Frame size		neight	gran
4 Fleshiness			
5 Bone incidence 6 Thorax depth	—	FINAL MC	DRPHOLOGICAL JUDGEMENT
6 Thorax depth 7 Fore diameters		F	F+ G VG E
8 Rear diameters			Fair + Good Very Excellent
9 Lenght of upper line	 		Good
10 Direction of upper line	 		
11 Hind legs side view		Notes and/or	cause for no-admission to stud book
12 Fore feet		-	
13 Rear feet			
14 Hind legs back view		CLASSIFIER	:: ID no

Traits and models

Genetic trend of trait

Bi-trait analyses

- among fitness traits
- fitness vs. linear type traits
- among type traits (Folla et al. 2019)

Multi-trait selection response

• R = G-P⁻¹-S (Lande, 1979; Kause et al., 2015)

 $R = (i/\sigma_i) \cdot b' \cdot P^{-1}$

 σ_i =(b'Pb)^{1/2}

b=P⁻¹Ga

 $Rds_i = R/\sigma_{Pi}$

P= Phenotypic variance matrix

G = Genetic variance matrix

 σ_i = Trait's phenotypic standard dev.

i = Selection intensity (here i = 1.755)

a = economic weight of traits

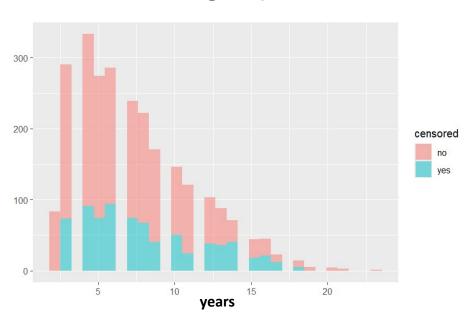
economic weight of traits:

- 1. Current selection (100% linear type traits):
- o.25 Head size & expression
- 0.15 temperament
- 0.25 fleshiness
- 0.15 fore diameters
- 0.2 rear diameters

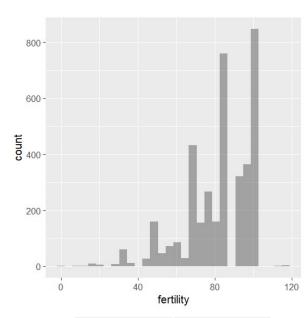
Inclusion of fitness (20% fitness, 80% type traits)

(let's see the Results!)

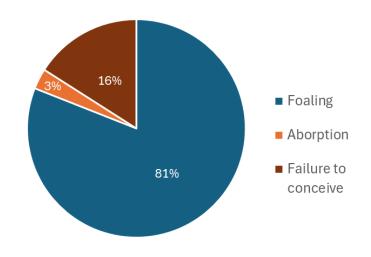
Results



Descriptive statistics

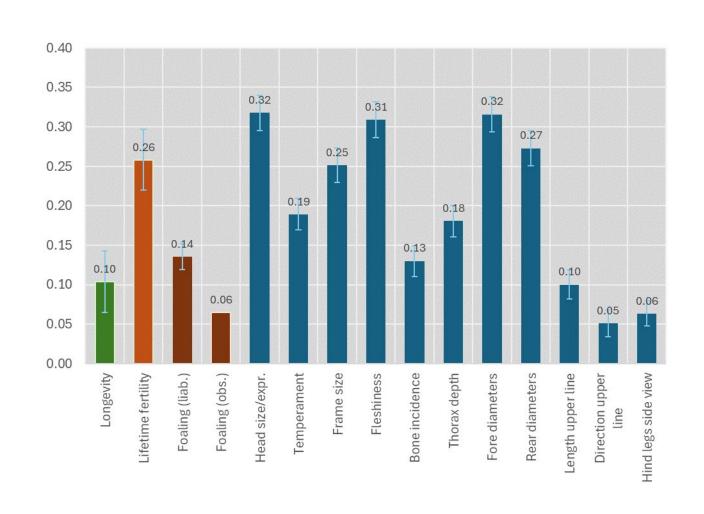


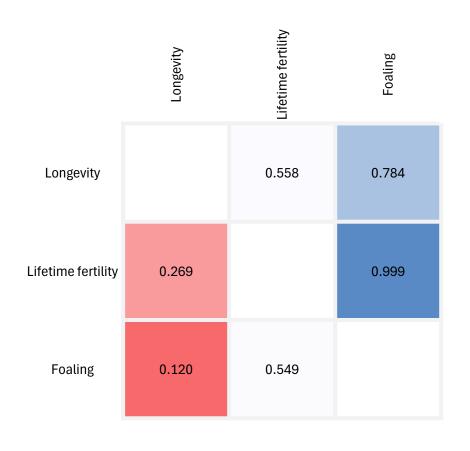
Longevity


Censored:	yes	No
Median	7	6
Mean	8.03	7.08
Std. Dev.	3.90	3.90
Min.	3	2
Max.	18	23
n.	757	1809

Lifetime fertility

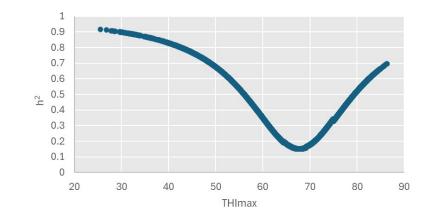
Stat:	Lifetime fert.		
Median	83		
Mean	81.67		
Std. Dev.	17.00		
Min.	0		
Max.	117		
n.	3823		


Foaling event



Variable	Successful foaling	Unsuccessful f.
Average Mean T°C	14.68 (5.69)	18.88 (6.61)
Average Max T°C	19.65 (6.05)	24.05 (7.29)
Average Min T°C	9.94 (5.30)	14.25 (5.87)
Relative Humidity %	71.20 (7.18)	67.34 (12.01)
Average Mean THI	57.97 (8.53)	63.80 (9.47)
Average Max THI	65.38 (8.77)	71.27 (9.89)

Heritability & correlations among fitness traits


GxE in foaling event, yes vs. not

Variance components & heritability

analysis	Pe	G	covGxE	GxE	R	h²
noTHI	0.012	0.143	-	-	1.002	0.124
THIenv	0.022	0.161	-	-	1.004	0.135
THIgen	0.025	0.184	-0.073	0.537	1.000	0.115

Above: Variance components & heritability of traits (posterior means, liability scale) **Below:** Plot of heritability by THI (GxE model)

EBV rank correlation

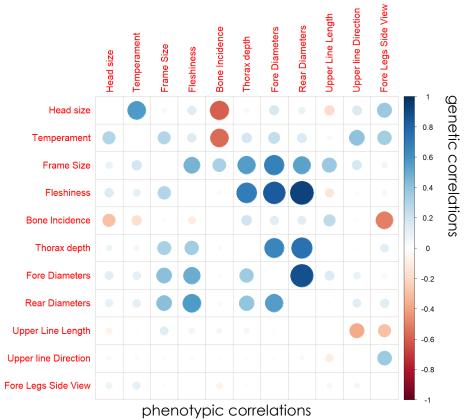
Mares / Stallions	noTHI	THIenv	THI GxE	
no THI	-	0.917	0.684	
		<0.001	<0.001	
THI env	THI env 0.879		0.781	
	<0.001		<0.001	
THI GxE	0.698	0.821	-	
	<0.001	<0.001		

Above: Spearman correlations between EBVs ranks of mares (above diagonal, n=3308) and stallions (below diagonal, n=1464)

Variance for GxE detected

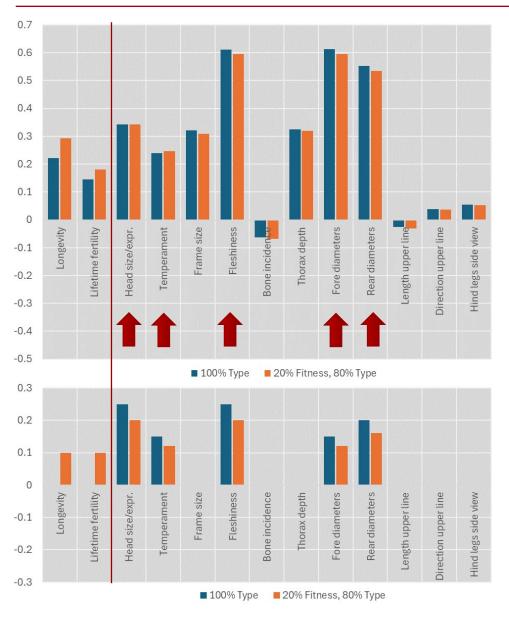
Reranking of animals:

- under THI \rightarrow importance of the environmental covariate
- under $GxE \rightarrow it$ should be considered in selection


Correlations with linear type traits

Fitness vs. type traits

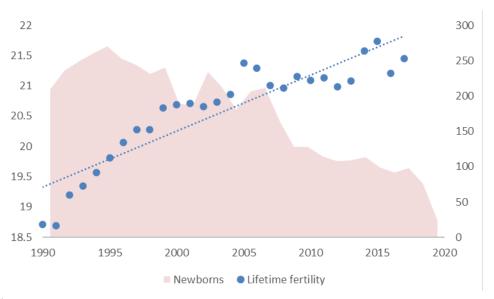
	Lifetime fertility		Longevity		
	r _a	r _P	r _a	r _p	
Head size/expr.	0.164	0.033	0.224	-0.003	
Temperament	0.198	0.025	0.360	0.012	
Frame size	0.125	0.011	0.138	0.015	
Fleshiness	0.251	0.059	0.255	0.009	
Bone incidence	-0.149	-0.013	0.084	0.059	
Thorax depth	0.192	0.015	0.231	0.024	
Fore diameters	0.255	0.038	0.259	0.010	
Rear diameters	0.262	0.067	0.206	0.001	
Upper line length	0.032	0.044	-0.617	-0.062	
Upper line direction	-0.017	-0.010	-0.026	-0.006	
Fore legs side view	0.011	0.046	0.077	0.038	

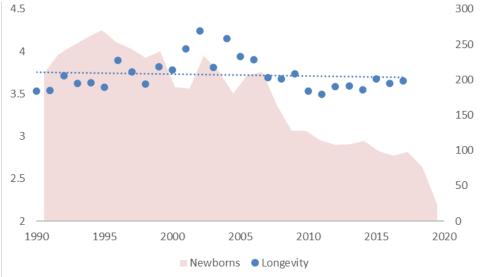

Type traits vs. type traits

Traits under selection Significant correlations are **bolded**

Response to selection & genetic trend

Standardized selection response


■100% Type


Current selection index, only type traits considered

■ 20% Fitness, 80% Type 20% of economic weight to fitness traits

Economic weights of traits

Genetic trend of traits

Conclusions & Perspectives

Conclusions:

- Variance components & heritability estimated for fitness traits in horses (Italian Heavy Draught Horse):
- Functional longevity, Lifetime fertility, Foaling events
- Effects of **THI** on foaling events (environmental covariate & **GxE**): important to consider robustness in selection
- **High genetic correlations** among fitness traits & **linear type traits** currently under selection (5 traits for draught and meat improvement)
- **Positive response to selection** for fitness traits under current genetic improvement
- Even more positive response if fitness traits are included in selection index
- Should be a good option for longevity, which genetic trend is almost zero (lifetime fertility is increasing)
- Results suggest the importance of accounting for fitness traits and climate information in horse breeding, especially in local populations exposed to various rearing systems and management conditions

Perspectives:

- To evaluate how to consider robustness in selection
- **To implement the inclusion** of fitness traits in routine breeding practices

