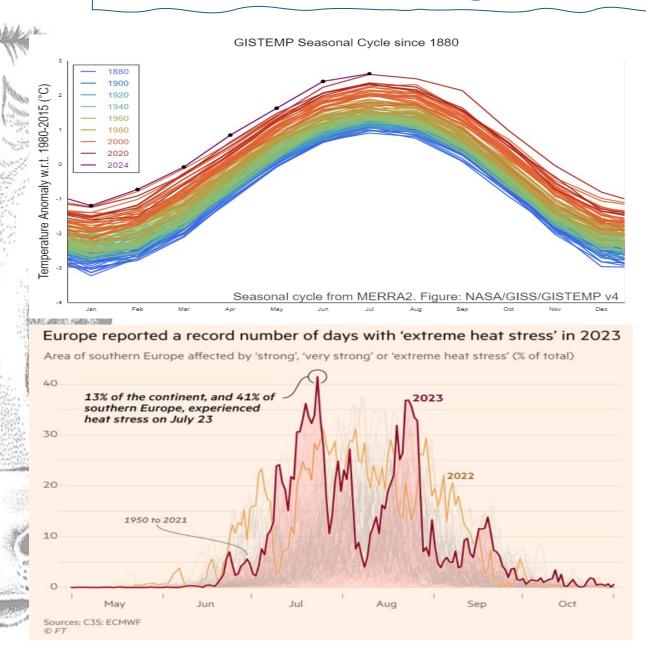
The 75th EAAP Annual Meeting 1/5 September 2024 - Florence, Italy

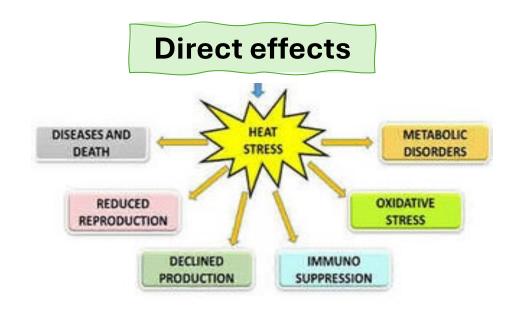
Effect of a blend of natural isoquinoline alkaloids on production efficiency, health, and cortisol levels in dairy cows during summer

Grossi S.1, Pastor A.2, Sgoifo Rossi C.A.1

¹Department of Veterinary Medicine and Animal Science, University of Milan, IT ²Phytobiotics Futterzusatzstoffe GmbH, Eltville, DE



UNIVERSITÀ DEGLI STUDI DI MILANO


Global warming: its role on livestock production

Threat for livestock production

Indirect effects

- ✓ Water scarcity
- ✓ Changes in feed availability and nutritional values
- ✓ New pests
- ✓ Emergence of new diseases
- Increased competion with other sectors for scarce resources

Negative effects of heat stress in dairy cows

Behaviour changes

- Reduced feed intake
- Reduced rumination
- Reduced lying time

Hormonal changes

- Increased anorexic hormones production
- Increased production of stress related hormones

Reduced energy availability

Damages to the ruminal and intestinal epithelia

- Increased proinflammatory status
- Increased absorption of endotoxins and other toxins
 - Disproportionate immune response

Negative effects on immunity and reproduction

Further negative effects on immunity, health and reproduction

-0.7 L/head

-30% in fertility performances

for each point of THI increase

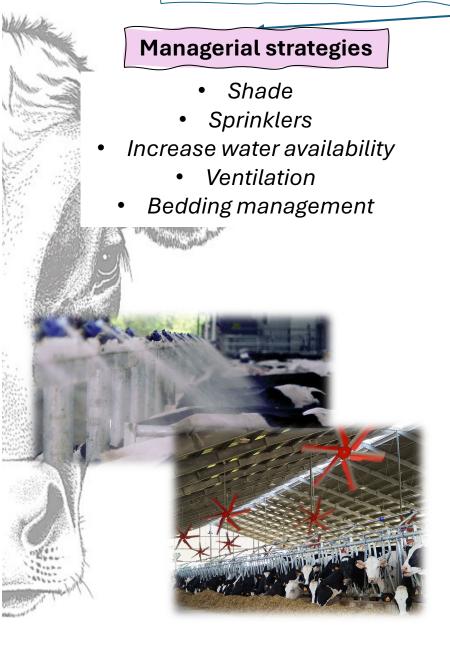
Compared to winter performances

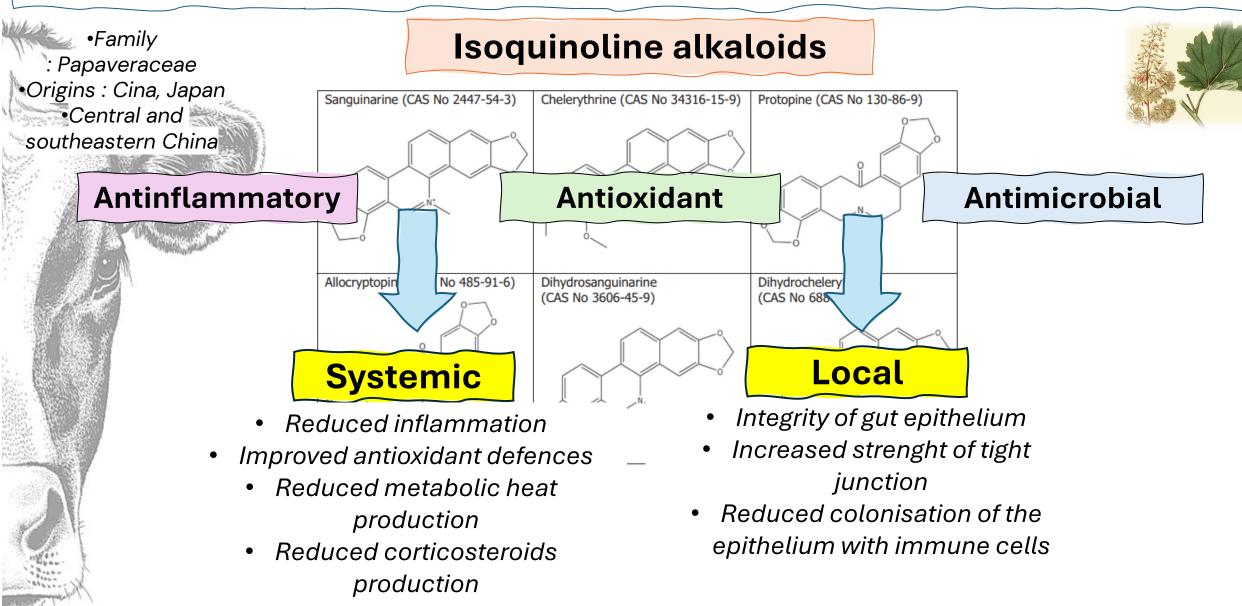
Economic losses

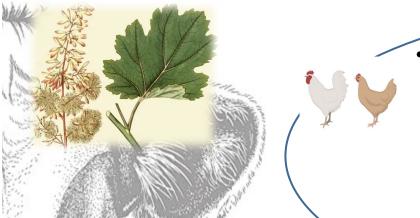
Sustainability issue

Strategies to counteract heat stress in dairy cows

- Feed management
- Energy dense diets
- Prevent feed heating
- Specific feed additives


REDUCED





The properties of Macleaya cordata and its isoquinoline alkaloids

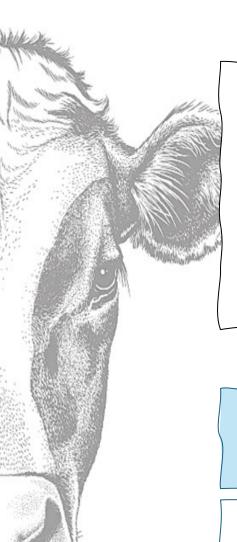
The properties of Macleaya cordata and its isoquinoline alkaloids

- Better antioxidant status and proinflammatory status during heat stress
- Reduced cortisol production during heat stress
 - More resilient animals to heatn stress (reduced respiratory rate etc)
 - Growth and production performance
 - Diet digestibility

However:

- ✓ Variable effects on production performances
 - ✓ No data on heat stressed cattle
 - Some field evidence on improved feed digestibility and production efficiency

Aim of the trial


To investigate the **effects** the administration of a product (Sangrovit Feed X5) containing **isoquinoline alkaloids (IQs)** deriving from *Macleaya cordata* in dairy cows **to counteract heat stress** with a focus on:

Production performances

- Milk production
- Feed conversion rate
 - Fertility

Animal health and wellbeing

- Disease incidence
- Levels of stress-related hormones

The Trial: groups and timeline

- 120 lactating Holstein Friesian cows
 - Two study groups:
- 1. Control, standard basal diet +60g/head/d of placebo of wheat bran
- 2. Treatment, standard basal diet + 60g/head/d of the tested product (Sangrovit Feed X5).

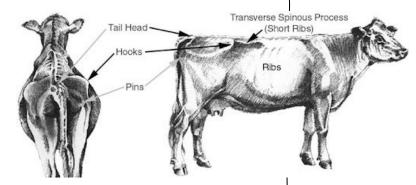
Group	Number of animals	Parity	Days in milk (DIM)
Control	60	2.02	51.9
Treatment	60	2.07	48.8

✓ 13 weeks, starting from the 28th of June 2023

✓ Temperature, humidity and THI: hourly recorded from the nearest ARPA station

The Trial: parameters recorded

Production Performance


- ✓ Milk Yield: daily individual productions, individual weekly averages
- ✓ Milk Quality: monthly for fat, protein, urea, caseins and lactose betahydroxybutyrate and somatic cells count

- ✓ Feed Intake: weekly group feed intake
- √ Feed Conversion Rate

✓ Reproductive Performances: % of pregnant cows at the end of the trial, conception rate (pregnant cows/total number of services), average services per head

The Trial: parameters recorded

Apparent total tract digestibility (aTTD)

- ✓ Characteristics of diets and Feces: monthly on 3 consecutive days
- ✓ Apparent Total Tract Digestibility calculation for each parameter (P):

$$\text{aTTD, \%=} \frac{(\left(\frac{Pfeed}{(ADLfeed-AIAfeed)}\right) - \left(\frac{Pfeces}{(ADLfeces-AIAfeces)}\right))}{(Pfeed/(ADLfeed-AIAfeed))}$$

P=parameter ADL= lignin AIA= acid insoluble ash

Janckewicz et al. (2017)

Health and blood parameters

- ✓ Incidence of diseases and health issues
- ✓ Blood samples for the evaluation of the cortisol levels (d0 and d60) on a subset of cows (10 per group)

Statistical analyses:

- 1. Mixed procedure of SAS for single and repeated meausure
- 2. Chi square test for frequencies and incidence
- Significancy set at pvalue < 0.05 and tendencies at pvalue < 0.1

Results: production performance

+0.85

L/head/d

Parameter	Control	Treatment	P value
Milk production, L/head/day	30.04	30.89	<0.0001
Feed intake, kg/head/d d.m.	22.0	21.7	0.170
Feed conversion rate	1.38	1.43	<0.0001

✓ No effects on milk quality parameters

+2.8% Production + Similar feed intake

+3.6% Improvement in the overall production efficiency

Results: milk production

✓ Same trends for feed conversion rate

Results: diet digestibility

Months	Control	Treated	P-value		
NDF, %					
1st month (July)	49.23	49.54	0.902		
2nd month (August)	44.92	44.92	0.377		
3rd month (September)	52.92	53.62	0.840		
Starch, %					
1st month (July)	97.81	95.87	0.111		
2nd month (August)	96.38	97.28	0.297		
3rd month (September)	96.39	97.27	0.301		

No effects on NDF and Starch

✓ Levels in feces and diets

✓ Digestibility

Results: BCS

Month	Control	Treated	P-value
	В	CS	
Start of the trial	2.99	2.98	0.727
1st month (July)	2.90	2.88	0.644
2nd month (August)	2.89	2.92	0.587
3rd month (September)	2.95	2.95	0.951

- ✓ Similar mobilisation of body reserves in the two groups
 - ✓ No main effects of heat stress on body condition scores

Results: health status

Issue, % (n)	Control	Treated	P-value
Lameness	24.14 (14)	10.34 (6)	0.029
Severe lameness*	6.90 (4)	0.00 (0)	0.059
Mastitis	10.34 (6)	3.45 (2)	0.105
Abortion	3.45 (2)	0.00 (0)	0.247
Bloat	6.90 (4)	0.00 (0)	0.059
Total	50 (30)	13.33 (8)	0.0010

^{*}cases of lameness that needed to be treated with antibiotics

- ✓ Increased uptake due to epithelial damages cause by heat stress
- ✓ Increased systemic proinflammatory status

Local damages at the hoof level

Impairment of the reproductive

function

Treatment

- ✓ Counteract the proinflammatory status
- ✓ Improve antioxidant defences
- ✓ Protect the intestinal/ruminal barrier
 - ✓ General better resilience

Reducing thus the negative effects of mycotoxins as well as, directly, of heat stress

Results: cortisol levels

Days, d	Control	Treated	P-value	
Cortisol, μg/dL				
d0	0.635	0.672	0.651	
d60	0.586	0.339	0.0032	

Lower levels of cortisol

- ✓ Reduced abnormal behaviour (feeding and lying time)
 - ✓ Reduced negative effects on immune functionality
 - ✓ Reduced negative effects on insuline production

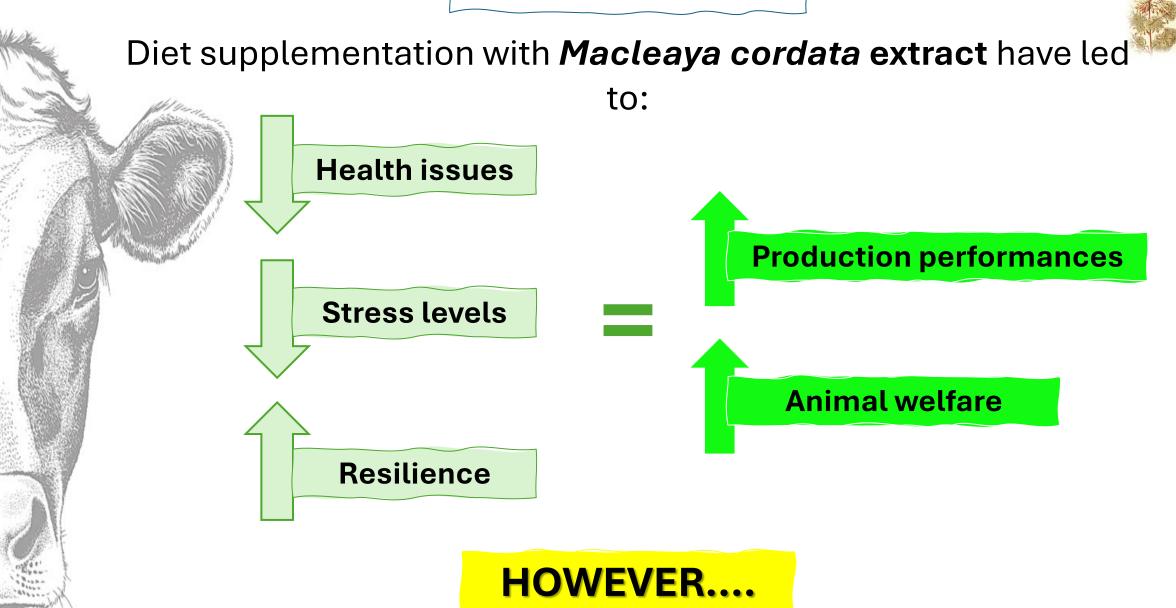
√ Improved health

√ Improved productivity

√ Improved reproductive function

Results: fertility

Parameter	Control	Treated	P-value
Pregnant cows, % (number)*	37.93 (22)	72.41 (42)	0.0001
Average services per head	2.34	1.93	0.0028
Conception rate, %**	16.18	37.5	-


^{*2} animals per group were already pregnant at the start – removed from those evaluations

**pregnant cows/total inseminations performed per group

Treatment

- ✓ More stable hormonal production
- ✓ Better resilience to heat stress → negative effecst on follicular development
- ✓ Reduced uptake and circulation of endotoxins and mycotoxins✓ Higher energy availability

Trial conclusions

Conclusions

General response to all possible stressors

Increased corticosteroids production

Increased oxydative stress

Worsened inflammatory status

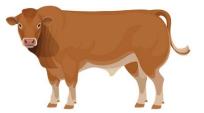
Affect immune response

Affect hormonal production

Affect integrity and stability of the gut ephitelia

IQs alkaloids

Corticosteroids production Oxidative stress Inflammatory conditios Tight junciton strengh
Gut epithelial barrier
Antioxidant defences
Improve inflammatory status


Can be a **preventive** and **functional** strategy:

✓ During each stressfull phases and conditions

Transition period

Calf weaning

Arrival period

High-grain diets

Conclusions

Role of gut health in ruminants:

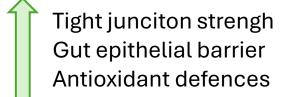
DIGESTION

4 - 5% of starch and 5 - 12% of NDF are digested in the gut

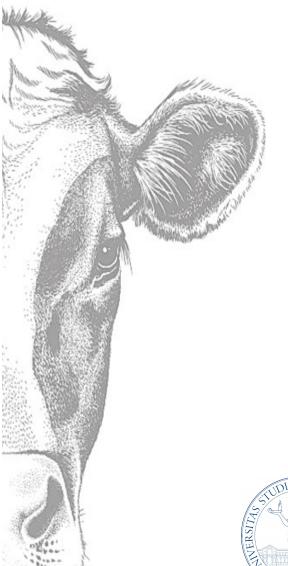
PROTECTION

Barrier that **limit the transmigration** of critical compounds (**toxins, antigens and bacteria**)

HEALTH


Crucial for **immunity** and in the **pro inflammatory cascade**→ leaky gut

IQs alkaloids


Oxidative stress
Inflammatory conditios

Can be a preventive and functional strategy:

✓ To generally sustain animal health and production efficiency

The 75th EAAP Annual Meeting 1/5 September 2024 - Florence, Italy

THANKS FOR THE ATTENTION

....AND TIME FOR QUESTIONS!

UNIVERSITÀ DEGLI STUDI DI MILANO

