

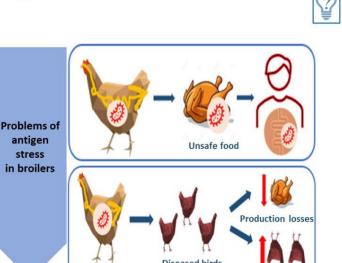
Effects of in-ovo stimulation on gut health and production of broiler chickens.

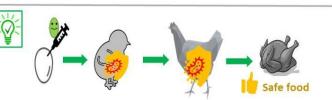
Maria Siwek

Bydgoszcz University of Science and Technology

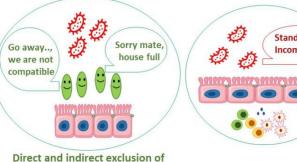
This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 955374.

ESR3 & ESR4 projects



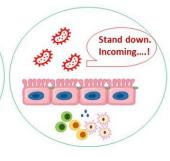

Ramesha N. Wishna-Kadawarage

Mitigation of environmental antigen stress effects in poultry production using microbiome programming in-ovo

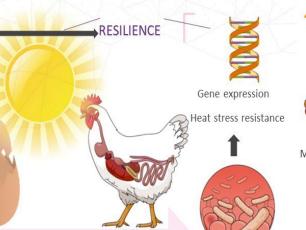


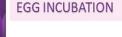
gut microbiota to gain a competitive advantage over environmental pathogens

pathogens via early colonization of gut with probiotics


In-ovo injection of pre/probiotics will allow early programing of ffects in poultry production using microbiome

Modou Mangan (ESR4)




Improve gut

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 955374

LIFE PERFORMANCE

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 955374.

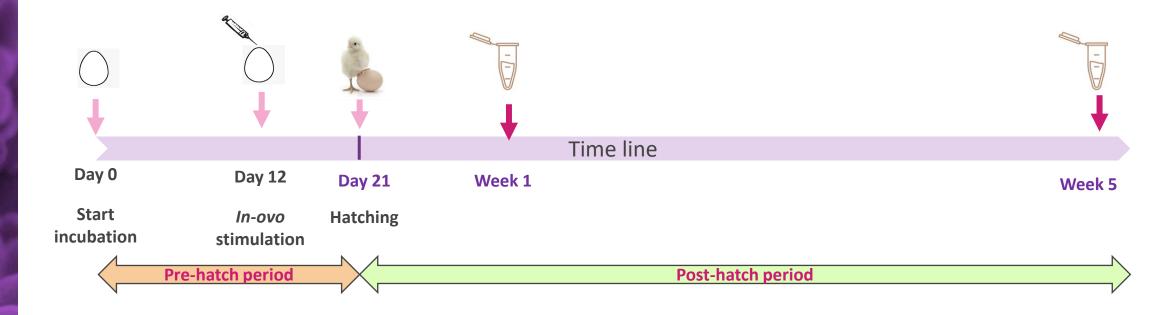
HATCH

Introduction & objective

Healthy gut → "the absence of gastrointestinal symptoms and disease, as well as an absence of other unfavorable local conditions including increased intestinal permeability, mucosal inflammation, or deficiency (or even excess) of short-chain fatty acids"

complex physiological status with utmost importance for an organism

Objective:


To determine effects of *in-ovo* stimulation with a selected prebiotic, probiotic and a prophybiotic combination on gut health and production of broiler chickens in **environmetal homeostasis** and **environmental challenge**.

The in ovo concept

Environmental homeostasis

Effects of in-ovo stimulation on gut health and production of broiler chickens

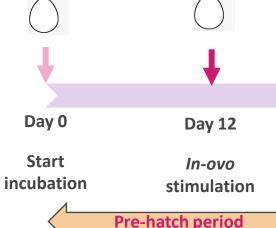
Methodology – experimental setup

Group	Abbreviation	In-ovo injection composition	Dose of bioactive /egg	
Negative control	NC	Non injected		
Positive control	PC	Physiological saline	0.2ml of 0.90% w/v of NaCl	
Probiotic 1	LP	Lactiplantibacillus plantarum bacterial suspension in physiological saline	10 ⁶ CFU (in 0.2ml)	
Probiotic 2	LM	Leuconostoc mesenteroides bacterial suspension in physiological saline	10 ⁶ CFU (in 0.2ml)	
Prebiotic	GOS	Galactooligosaccharides dissolved in physiological saline	3.5mg GOS (in 0.2ml)	
Prophybiotic (Probiotic + Plant extract)	LMG	A mixture of Leuconostoc mesenteroides bacterial suspension in physiological saline and 0.5% garlic aqueous extract (in 2: 1 ratio, respectively)	10 ⁶ CFU of bacterial suspension + Garlic aqueous extract 0.5% (w/v) (in 0.2ml)	

Methodology – environmental homeostasis

Experimental groups:

NC: Negative control (No injection)


PC: **Positive control** (Physiological saline injection)

LP: **Probiotic** (Lactiplantibacillus plantarum **10**⁶ **CFU/egg**)

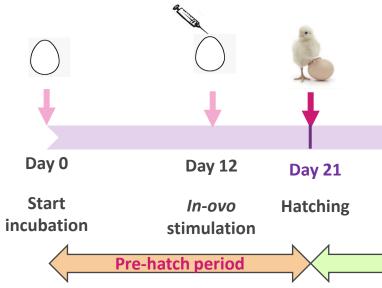
LM: Probiotic (Leuconostoc mesenteroides 10⁶ CFU/egg)

GOS: Prebiotic (Galactooligosaccharide)

Prophybiotic (Leuconostoc mesenteroides 10⁶ CFU/egg + 0.5% (w/v) Garlic aqueous extract)

Time line

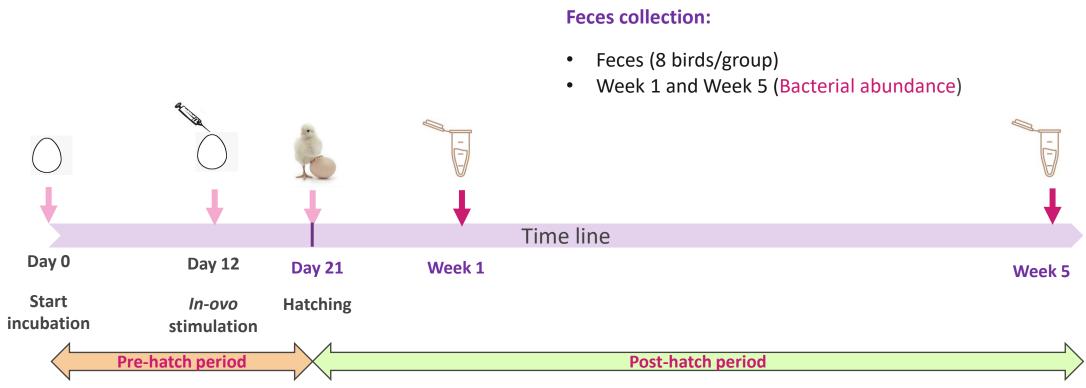
Post-hatch period


Methodology

Data collection:

- Chick weight
- Chick length
- Pasgar score

Time line

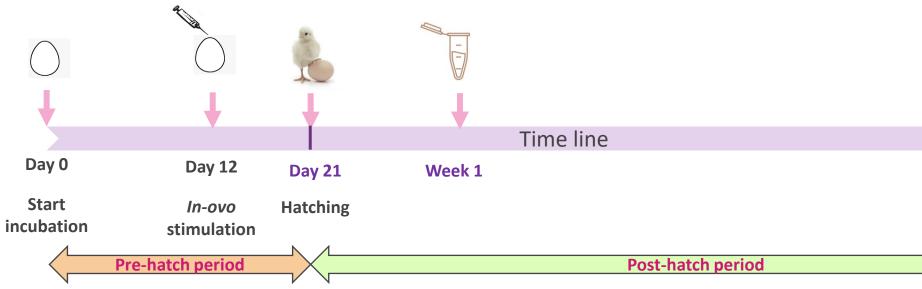

Post-hatch period

Methodology

Methodology

Week 5

Slaughter (8 birds/group): Sample collection


- Cecal content (abundance of bacteria)
- Cecal tissue (Histo-morphometry)
- Cecal mucosa
- Cecal tonsils
- Spleen
- Liver

Slaughter analysis: (8 birds/group)

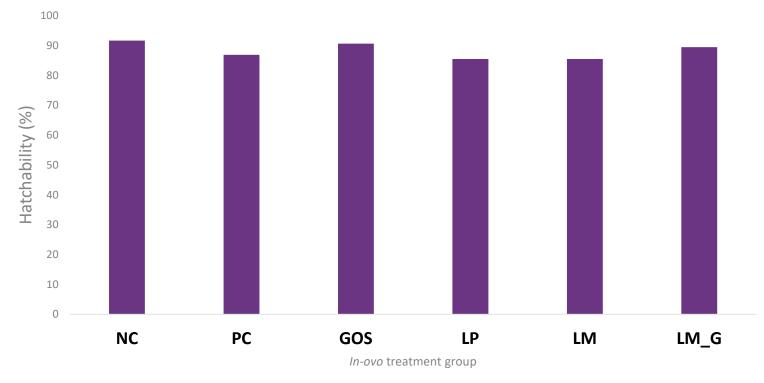
- Carcass dressing %
- Breast muscle %
- Leg muscle %
- Leg bones %
- Giblets %
- Abdominal fat %

Meat (Breast and thigh) quality analysis: (8 birds/group)

- pH
- Color
- Drip loss
- Thawing loss
- Cooking loss
- Shear force
- Texture

(Gene expression)

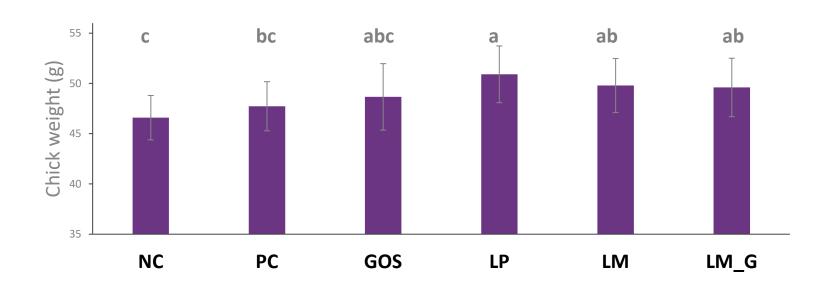
Statistical analysis


Data type	Method of statistical analysis	
Hatch data		
Body weights	Linear mixed model	
Slaughter and meat quality parameters	Fixed effect: Treatment	
Histomorphometry parameters	Random effect: Sex	
Relative abundances of bacteria		
Relative gene expression	Two sample t-test to compare between each treatment group and positive control group	

Results - hatchability

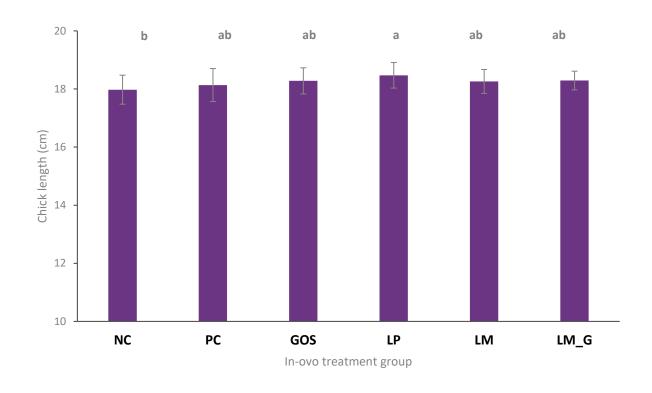
NC: Negative control, PC: Positive Control, GOS: Galactooligosaccharides, LP: *Lactiplantibacillus plantarum,* LM: *Leuconostoc mesenteroides* and LM_G: *Leuconostoc mesenteroides* + Garlic

Results – bacteria abundance



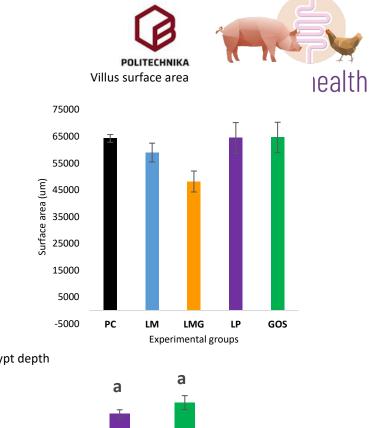
Treatment group	Fe	Cecal content	
	Early life	Adult stage	
GOS	Bifidobacterium sp. Lactobacillus sp.	Bifidobacterium sp. Lactobacillus sp.	Lactobacillus sp. Bifidobacterium sp.
LP	Bifidobacterium sp. Lactobacillus sp.	Bifidobacterium sp. Lactobacillus sp.	Lactobacillus sp. 1 Bifidobacterium sp. 1
LM	Faecalibacteria 1	No difference	Akkermansia sp. 1
LMG	Faecalibacteria Bifidobacteria	E. coli	Akkermansia sp. Faecalibacteria E.coli

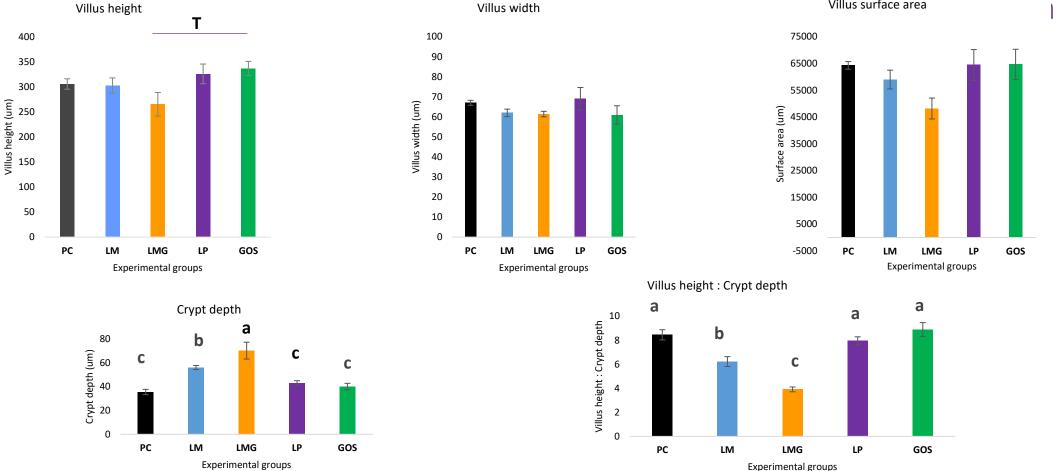
Results – chick weight



Error bars: \pm SD. Homogenous means have been indicated by similar letters (in descending order) as identified by Tuckey HSD test (p value <0.05). **NC**: Negative control, **PC**: Positive Control, **GOS**: Galactooligosaccharides, **LP**: Lactiplantibacillus plantarum, **LM**: Leuconostoc mesenteroides and **LM_G**: Leuconostoc mesenteroides + Garlic

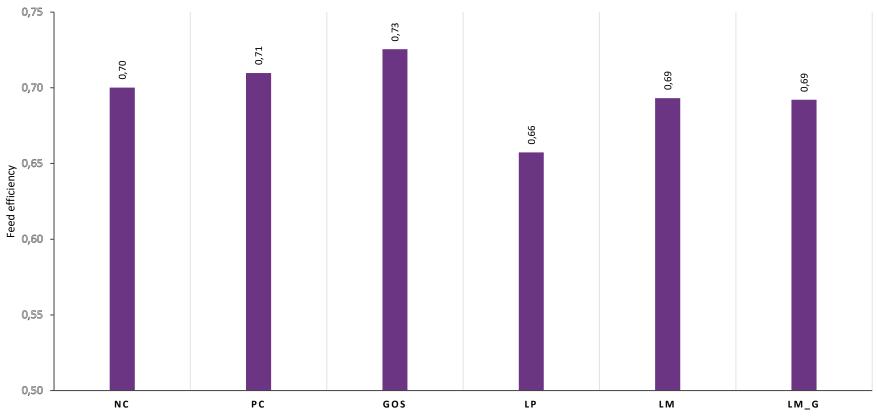
Results – chick length





Chick length of *in-ovo* treatment groups. Error bars: \pm SD. Homogenous means have been indicated by similar letters (in descending order) as identified by Tuckey HSD test (p value <0.05). NC: Negative control, PC: Positive Control, GOS: Galactooligosaccharides, LP: *Lactiplantibacillus plantarum*, LM: *Leuconostoc mesenteroides* and LM_G: *Leuconostoc mesenteroides* + Garlic

Results – cecal histomorphometry


Error bars: \pm SE. Homogenous means have been indicated by similar letters (in descending order). "T" indicates a statistical tendency (P value <0.1) PC: Positive control, LM: Probiotic Leuconostoc mesenteroides, LMG: Prophybiotic (Leuconostoc mesenteroides + garlic aqueous extract), LP: Probiotic Lactiplantibacillus plantarum, GOS: Prebiotic galactooligosachcharides

Results – feed efficiency

Overall feed efficiency of the chickens from the six *in-ovo* treatment groups. NC: Negative control, PC: Positive Control, GOS: Galactooligosaccharides, LP: *Lactiplantibacillus plantarum*, LM: *Leuconostoc mesenteroides* and LM_G: *Leuconostoc mesenteroides* + Garlic

Results – body weight

Day of life	Treatments (T)						T effect
	NC	PC	GOS	LP	LM	LM_G	
7	180.5 ± 25.8°	177.3 ± 23.0°	179.6 ± 26.2°	195.2 ± 24.0 ^{ab}	206.1 ± 25.6 ^a	190.2 ± 30.7 ^b	***
14	480.2 ± 71.5 ^b	500.0 ± 47.2 ^b	485.9 ± 63.3 ^b	518.8 ± 66.1 ^{ab}	536.9 ± 79.9 ^a	521.2 ± 62.1 ^a	**
21	1014.4 ± 143.1	1011.3 ± 113.5	1017.7 ± 113.9	1044.3 ± 112.0	1042.8 ± 141.6	1052.7 ± 129.4	NS
28	1681.5 ± 197.9	1663.8 ± 191.5	1655.4 ± 168.3	1716 ± 147.5	1718.3 ± 230.7	1711.9 ± 200.6	NS
35	2437.5 ± 254.9	2433.6 ± 301.7	2526.9 ± 276.0	2499.7 ± 225.4	2502.3 ± 255.7	2455.6 ± 266.3	NS

Results – slaughter analysis

Parameter	Treatments (T)					Ţ
	РС	GOS	LP	LM	LM_G	effect
Cooling losses	1.79 ± 0.21 ^a	1.43 ± 0.16 ^b	1.31 ± 0.37 ^b	1.35 ± 0.29b	1.55 ± 0.09 ^{ab}	***
Dressing percentage with giblets (%)	79.81 ± 1.14	80.19 ± 1.09	80.32 ± 1.09	79.51 ± 1.25	79.82 ± 1.24	NS
Dressing percentage without giblets (%)	76.83 ± 1.19	77.19 ± 1.15	77.35 ± 1.16	76.49 ± 1.26	76.7 ± 1.30	NS
Breast muscle (%)	31.35 ± 2.05	30.64 ± 0.84	31.34 ± 1.53	29.39 ± 1.53	30.77 ± 2.37	NS
Pectoral muscles (%)	19.19 ± 1.47	18.47 ± 1.14	18.7 ± 1.70	19.39 ± 1.27	18.89 ± 2.07	NS
Giblets (%)	3.75 ± 0.42	3.73 ± 0.34	3.63 ± 0.15	3.93 ± 0.24	3.91 ± 0.30	NS
Liver (%)	2.23 ± 0.30	2.19 ± 0.21	2.14 ± 0.07	2.42 ± 0.29	2.34 ± 0.19	NS
Gizzard (%)	0.96 ± 0.20	0.94 ± 0.13	0.89 ± 0.16	0.92 ± 0.19	0.97 ± 0.12	NS
Heart (%)	0.53 ± 0.06	0.53 ± 0.03	0.57 ± 0.07	0.55 ± 0.07	0.53 ± 0.05	NS
Pectoral bones (%)	3.98 ± 0.48	4.03 ± 0.38	4.16 ± 0.65	4.44 ± 0.49	4.18 ± 0.40	NS
Abdominal fat (%)	1.83 ± 0.30	1.85 ± 0.24	1.9 ± 0.32	1.94 ± 0.46	1.7 ± 0.34	NS

Conclusions

In-ovo stimulation with the selected prebiotic / probiotic/prophybiotic confer long term benefits on invivo:

- gut microbiome
- **Cecal histo-morphology**

The treatments did not adversely affect the hatch, production or meat quality parameters

The prophybiotic application can be potentially more beneficial than using probiotic alone for in-ovo stimulation

Future research is necessary to test different prophybiotic combinations to maximize the benefits on gut health of broiler chickens.

Environmental challenge

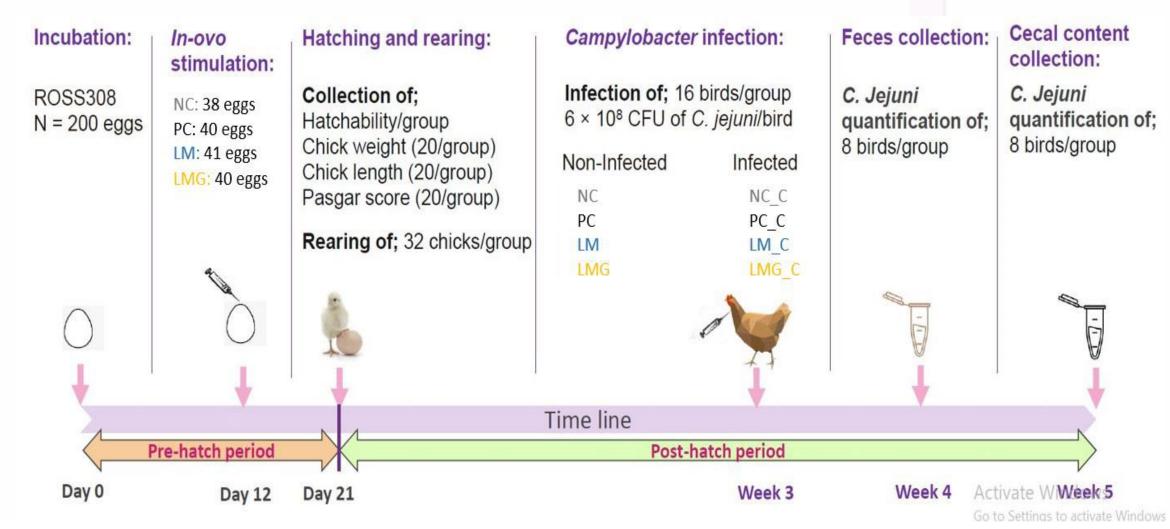
Effects of in-ovo stimulation on gut health and production of broiler chickens

Campylobacter jejuni – environmental antigen

Campylobacter is the most common foodborne pathogen reported within Europe transmitted to humans mainly from chicken sources.

Poultry ceca can carry a large number of Campylobacter without showing symptoms.

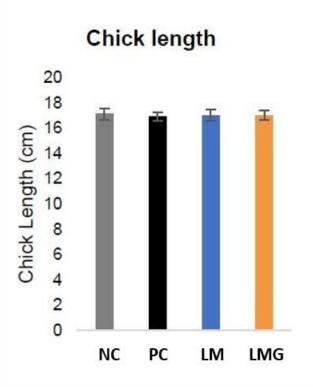
Campylobacter infection impacts the intestinal integrity, intestinal permeability, tight junction proteins causing inflammation and leaky gut in chickens.

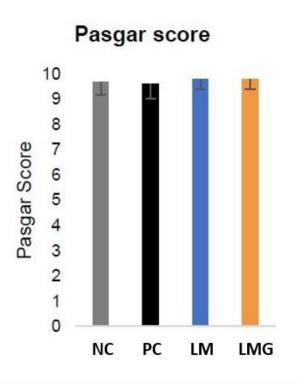


controlling *Campylobacter* in broiler chickens is imperative for food safety as well as in addressing animal welfare concerns

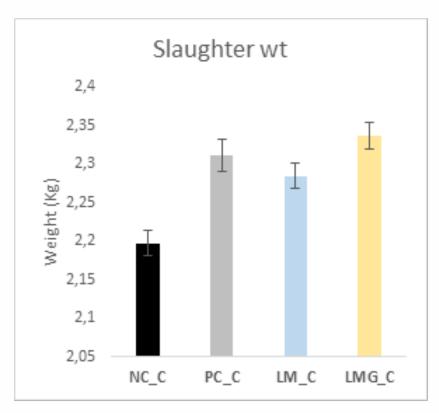
Campylobacter challenge experiment

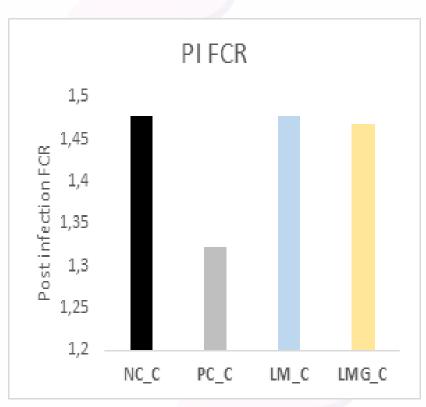
Methodology – experimental setup



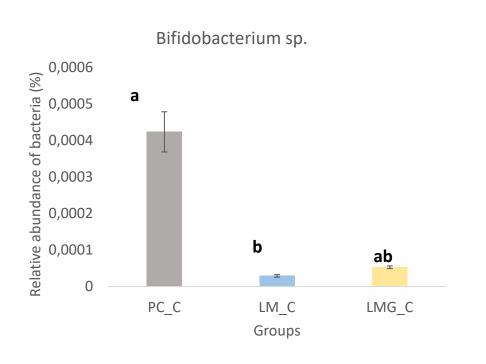

Group	Abbreviation	In-ovo injection composition	Dose of bioactive /egg	
Negative control	NC	Non injected		
Positive control	PC	Physiological saline	0.2ml of 0.90% w/v of NaCl	
Probiotic	LM	Leuconostoc mesenteroides bacterial suspension in physiological saline	10 ⁶ CFU (in 0.2ml)	
Prophybiotic (Probiotic + Plant extract)	LMG	A mixture of Leuconostoc mesenteroides bacterial suspension in physiological saline and 0.5% garlic aqueous extract (in 2: 1 ratio, respectively)	10 ⁶ CFU of bacterial suspension + Garlic aqueous extract 0.5% (w/v) (in 0.2ml)	

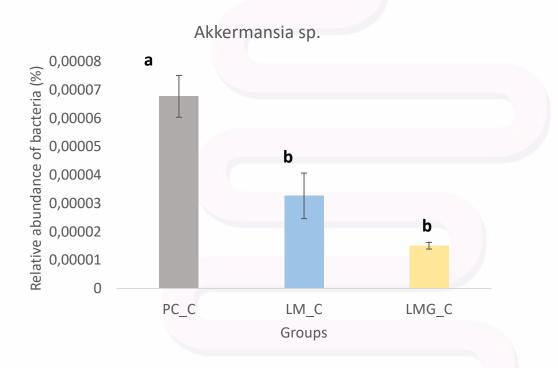
Campylobacter challenge – chick quality


Chick length, Pasgar score and chick weight of the experimental groups. Error bars: ± SD. Homogenous means have been indicated by similar letters (in descending order) (p < 0.05). NC: Negative control, PC: Positive Control, LM: Probiotic Leuconostoc mesenteroides and LMG: Prophybiotic: Leuconostoc mesenteroides + Garlic aeqous extract



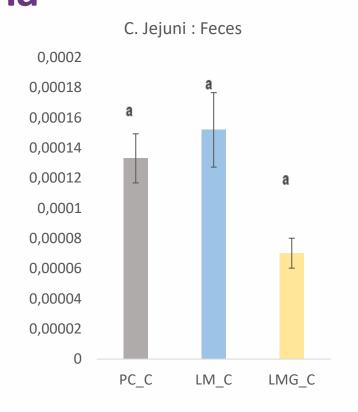
Campylobacter challenge – production parameters

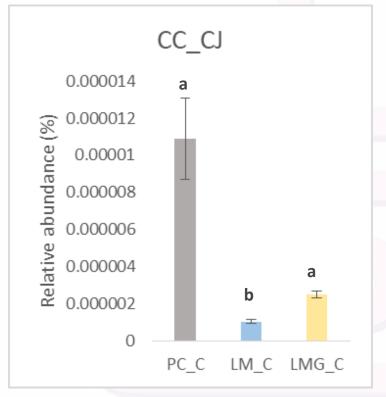

Production parameters. A: Slaughter weight B: Post-infection feed conversion ratio



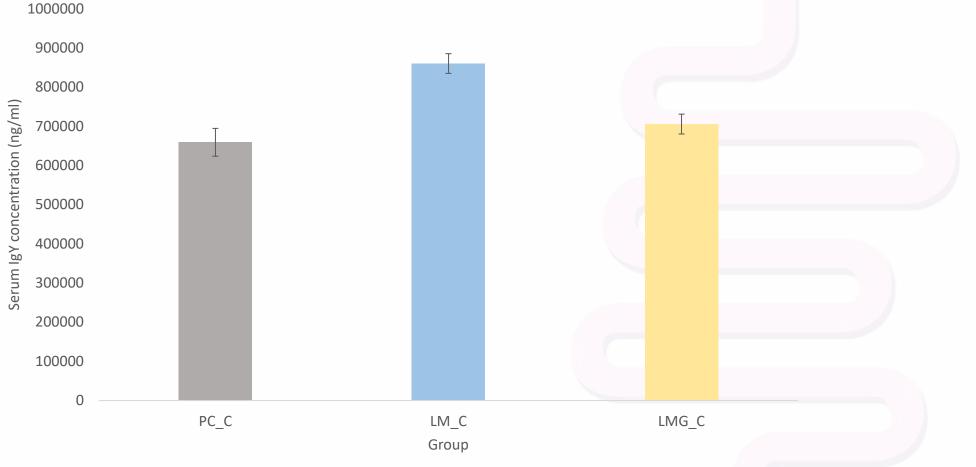
Campylobacter challenge – bacteria abundance

Relative abundance (%) of beneficial bacterial communities in the ceca of Campylobacter jejuni infected chickens. A: Bifidobacterium sp. B: Akkermansia sp.



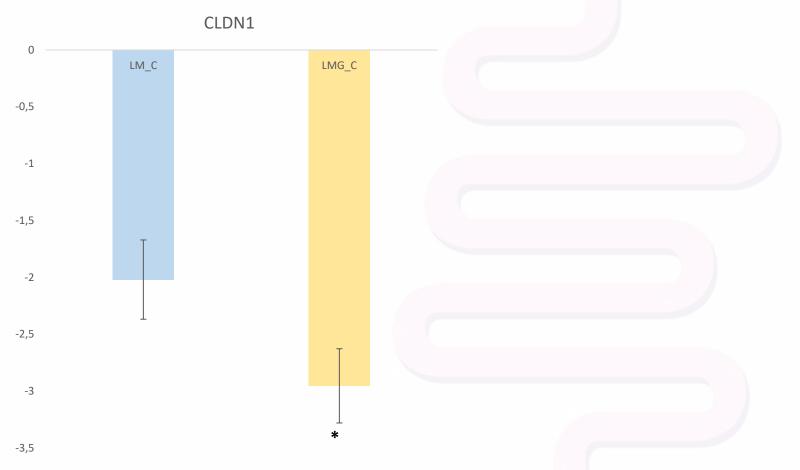

27

Campylobacter challenge experiment – bacteria


Results of *Campylobacter jejuni* relative abundance (%) in A: Feces on day 28 (one week post infection) and B: Cecal content on day 34 (2 weeks post infection). Error bars: ± SE. Homogenous means have been indicated by similar letters (in descending order) (p < 0.05). PC_C: Positive control_infected, LM_C: Probiotic_infected, LMG_C: Prophybiotic_infected

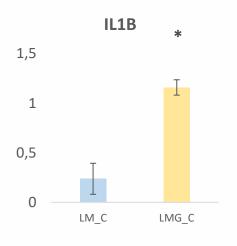
Campylobacter challenge - IgY

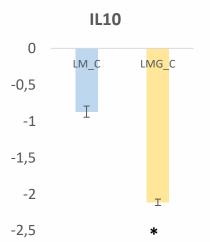
Serum immunoglobulin Y content of the Campylobacter jejuni infected chickens.

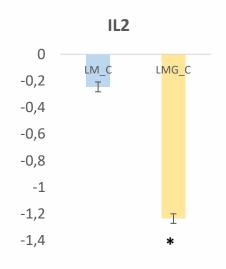


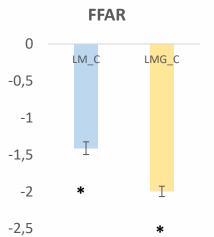
30

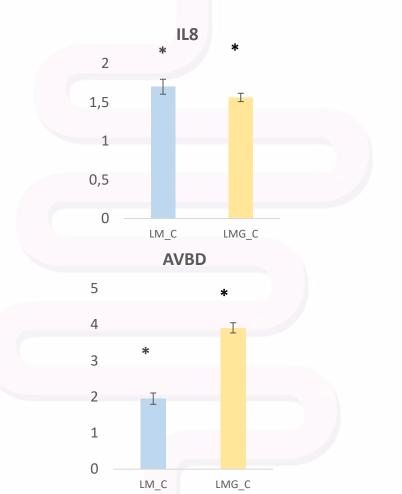
Campylobacter challenge – gene expression cecal mucosa

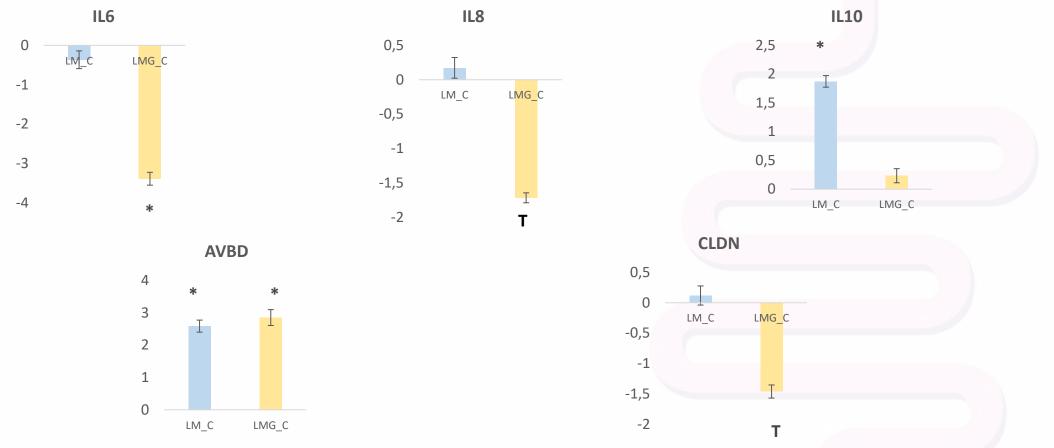

Significant changes in CLDN1 gene expression in the cecal mucosa



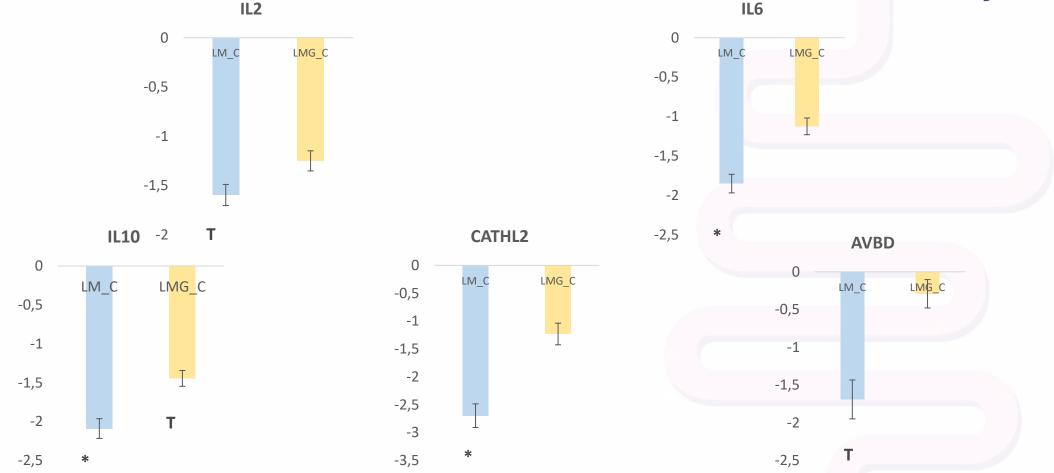

Campylobacter challenge – gene expression cecal tonsils






Significant changes in the gene expression of cecal tonsils of *Campylobacter jejuni* infected broiler chickens. *A: IL1B B: IL2 C: IL8 D: IL10 E: FFAR2 F:AVBD1*

Campylobacter challenge - gene expression spleen


Significant changes in the gene expression in the spleen of *Campylobacter jejuni* infected broiler chickens. *A: IL6 B: IL8 C: IL10 D: AVBD E: CLDN*

Campylobacter challenge – gene expression liver

Significant changes in gene expression in the liver of *Campylobacter jejuni* infected broiler chickens. A: *IL2* B: *IL6* C: *IL10* D: *CATHL2* E: *AVBD1*

Akkermansia sp. Bifidobacterium sp.

Modulation immune related gene expression

> Inhibition the immune tolerance acquired to Campylobacter jejuni

Cecal mucosa = CLDN

Cecal tonsils = LMG group : IL1B, IL6, AVBD IL2, IL10, FFAR2.

LM group: IL8, AVBD1 FFAR2

Spleen = LMG group: AVBD IL6, IL8, CLDN

LM group: AVBD, IL10

Liver = LMG group: IL10 -

LM group: IL2, IL6, IL10, CATHL2, AVBD

Conclusions

Selected **probiotic** (Leuconostoc mesenteroides B/00288) and a **prophybiotic** (Leuconostoc mesenteroides B/00288 + garlic aqueous extract) administered in ovo mitigated Campylobacter jejuni colonization in ROS308 broiler chickens without compromising the production parameters

In ovo stimulation with probiotic and prophybiotic triggered genes related to innate immunity in cecal tonsils and spleen.

LIMITATION !!!!!! > Only one strain of *Campylobacter jejuni* was used in the current study and the colonization potential and mechanisms differ in different strains.

37

TEAM WORK!

Ramesha N. Wishna Kadawarage

Modou Mangan

Rita Hickey

Cornelia C. Metges

Aleksandra Dunisławska

Patrycja Reszka

Agata Dankowiakowska

Katarzyna Połtowicz

Tomasz Stenzel

THANK YOU

POLITECHNIKA BYDGOSKA

www.monoguthealth.eu

monoguthealth

Optimal gut function in monogastric livestock

