

Glutamine supplementation during the suckling period and its influence on piglet growth and intestinal metabolism

Sciascia Q.L.¹, Buchallik-Schregel J¹, Schulze Holthausen J², Li Z¹, De Leonardis D¹, Görs S¹, Zentek J², Metges C.C¹

Research institute for farm animal biology (FBN), Dummerstorf, Germany
 Freie Universität Berlin, Department of Veterinary Medicine, Institute of Animal Nutrition, Berlin, Germany

75th European Association for Animal Production Meeting 2024 (EAAP 2024), Florence, Italy

Challenges of modern pig production.

Environmental impact (NH₃, N₂O, CO₂, CH₄ direct and indirect (50 - 70%).

Animal welfare (farrowing crates, lack of space).²

Negative public perception of mass production pig farming (European Livestock Voice).¹

Increased production costs (feed, energy, staff).

Loss of breed diversity (95% of modern production is just a few breeds) – bred for productivity.¹

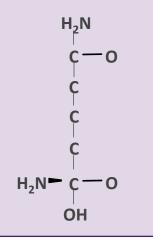
Increased litter sizes.

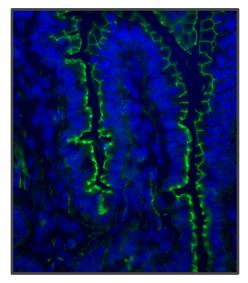
- ✓ Has decreased the number of litters required to produce 1000 weaned piglets from 126 in 2009 to 80 in 2021²
- * Has led to increased numbers of low birthweight piglets, which have a...²
- ...Higher pre-weaning mortality²

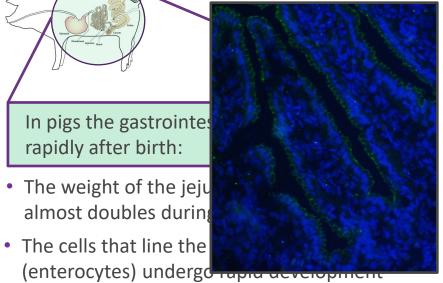
Low birthweight piglets – definition and problems.

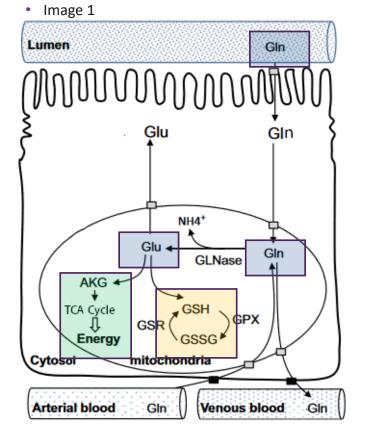
Definition: There is no commonly agreed definition for what constitutes a low birthweight piglet. Researchers have used birthweight cutoffs or individual / group litter birthweight variation as methods to define and identify low birthweight piglets in their studies.

- Slower growth:^{5,6}
- \checkmark
- a. Impaired muscle development and subsequent lower carcass quality.
- Altered metabolism:^{7,8}
 - a. Impaired pre-weaning glucose tolerance led to the identification of **myo-inositol** as a biomarker of low birthweight in pigs
- Impaired gastrointestinal development:^{9,10}


- a. Impaired pre-weaning intestinal structure and lower enzymatic activity
- b. Dysfunctional intestinal mitochondrial function and antioxidative defense at weaning.


✓ The amino acid Glutamine has been shown to improve the growth of pre-and post-weaning piglets and intestinal development in post-weaning piglets¹0-¹².




Glutamine - more than just an amino acid

rapidly after birth:

- Nutrient uptake
- Secretion of enzymes and immune molecules
- Passive barrier function

Glutamine (Gln) is the primary fuel for enterocytes of the small intestine¹³

Glutamine is taken up by the enterocyte, enters the mitochondria and is converted to Glutamate (Glu)

Glutamate is converted to Alpha-KetoGlutarate (AKG), enters the TCA cycle and used to generate ATP (energy)

Glutamate can also be converted to Glutathione (GSH), an antioxidant

Previous glutamine supplementation research in pigs

Most studies investigating glutamines effect on growth and development in pigs, have focused on the **weaning period**, results have reported that glutamine:

- Increased bodyweight
- Increased daily bodyweight gain
- Protected against intestinal atrophy by improving villus height and crypt depth
- Reduced intestinal permeability
- Prevented some negative metabolic changes associated with weaning¹⁶

Glutamine supplementation studies in **pre-weaning pigs** have shown that:

- Increased bodyweight, when supplemented from 7 to 21 days of age¹⁸
- Protected against intestinal atrophy by improving villus height¹⁸
- Increased daily bodyweight gain when supplemented from birth to 21 days age¹⁰

The Q (Glutamine)-PIG1 Project - (2016 – 2020)

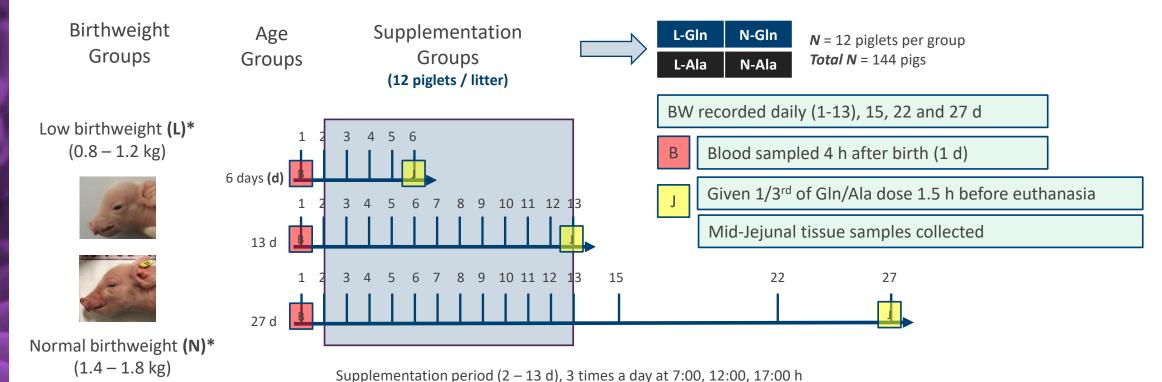
Hypothesis:

Oral glutamine supplementation during the early suckling period improves the bodyweight of low birthweight piglets, and is associated with changes in small intestine morphology/development and metabolism.

Aims:

To determine if oral glutamine supplementation of low birthweight piglets, during the early suckling period is associated with:

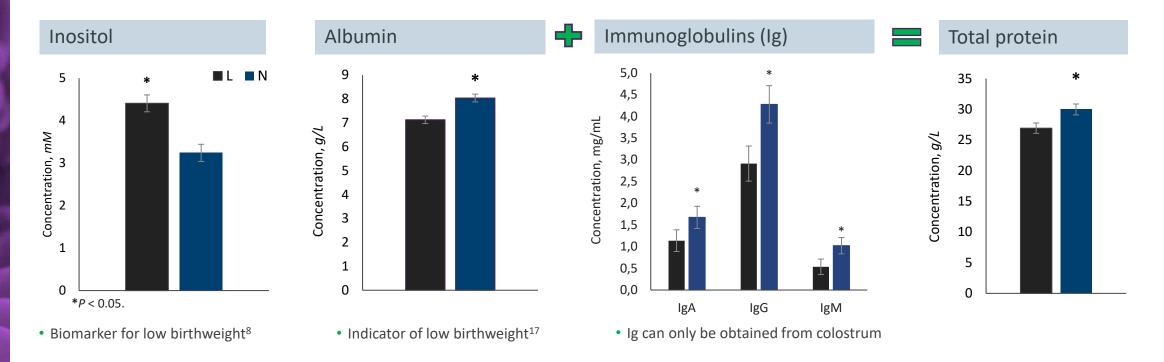
- 1.Improved bodyweight,
- 2. Morphological / developmental changes of the small intestine,
- 3. Changes in glutathione synthesis.


To determine if the changes observed from 1-3 are still present after supplementation has stopped.

The Q-PIG1 Project – Trial design

Males: Born to gilts Glutamine (Gln), 1 g / kg bodyweight (BW) / d $\frac{18}{2}$ Alanine (Ala), 1.22 g / kg BW / d (equal amount of nitrogen to Gln supplemented pigs)

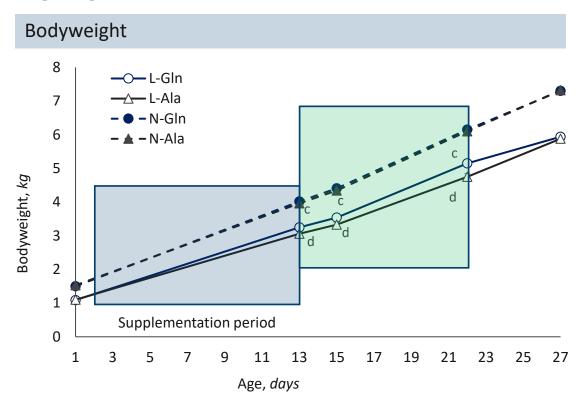
*(L), below the lowest birthweight quartile, (N); represents the middle 50th percentile, of the experimental pig facility



The Q-PIG1 Project - Results

Plasma metabolites at 4 hours after birth

Taken together, these results provide strong evidence that the low birthweight piglets selected for this study are low birthweight



The Q-PIG1 Project - Results

Piglet growth^{11,12}

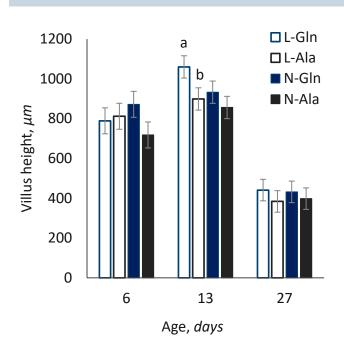
^{a,b}Different from N piglets within Supplementation group (P < 0.05).

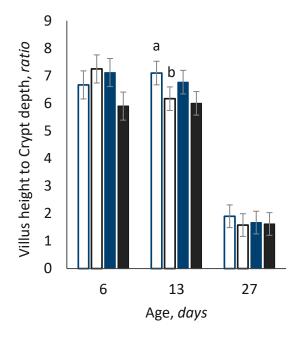
Average Daily Gain

Period (g/d)	L-Gln	L-Ala	N-Gln	N-Ala	SEM
1 - 6 d	129 ^b	122 ^b	156ª	156ª	7.90
7 - 13 d	179 ^b	165b	204ª	200a	8.36
14 - 27 d	187 ^b	186 ^b	224a	223a	10.9

- Bodyweight and Average Daily Gain were always higher in N then L piglets
- At ages 13, 15 and 22 d L-Gln piglets were heavier than L-Ala
- Oral supplementation of Gln is associated with increased bodyweight in L piglets and this effect persists beyond the supplementation period

^{c,d}Different from Ala piglets within Birthweight group (P < 0.05).

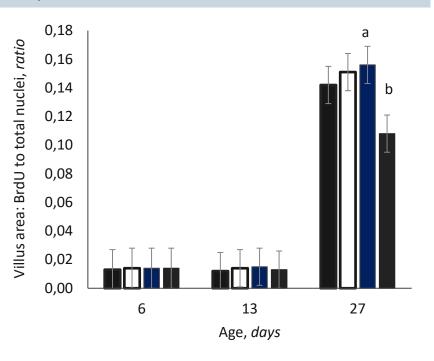



The Q-PIG1 Project - Results

monoguthealth

Jejunal parameters¹²

Villus height and Villus height to crypt depth ratio



^{a,b}Different from Ala piglets within Birthweight group (P < 0.05).

Jejunal glutathione concentrations were measured. **No differences were observed.**

Cell proliferation

These results suggest increased jejunal digestive and absorptive capabilities in low birthweight male piglets supplemented with glutamine compared to low birthweight alanine piglets

The Q-PIG1 Project - Conclusions

Oral glutamine supplementation (1g/kg BW/day) from 2 - 13 days of life to male low birthweight piglets:

- ✓ Improved bodyweight from 13 22 days of life compared to low birthweight controls
- ✓ Improved jejunal digestive and absorptive capabilities at 13 days of life

Open questions:

How does glutamine improve low birthweight piglet bodyweight?

What would happen if piglets were supplemented longer?

What if controls were supplemented with water?

What if a more proximal section of the small intestine was analyzed?

MonoGutHealth Project – (2021 – 2023)

Hypothesis:

Oral glutamine supplementation during the early suckling period improves the **bodyweight** of low birthweight piglets, and is associated with changes in **glutamine and/or glucose metabolism**.

Aims:

To determine if oral glutamine supplementation of low birthweight piglets, during the early suckling period is associated with:

- 1. Improved bodyweight,
- 2. Changes in small intestine glutamine or glucose metabolism,
- 3. Changes in small intestine development.

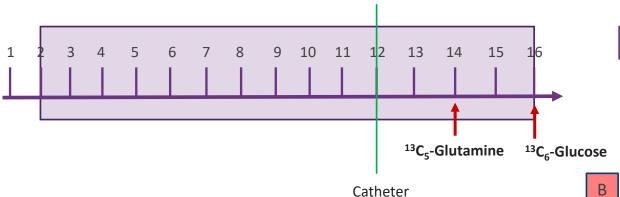
Catheter study: Study design

Birthweight Groups

Low birthweight (L)* (0.8 - 1.2 kg)

Normal birthweight (N)* (1.5 – 1.9 kg)

Males **Born to parity 2-9 sows**


Supplementation
Groups
(14 piglets per litter)

L-Gln	N-Gln
L-W	N-W

N = 12 piglets per groupTotal N = 48 pigs

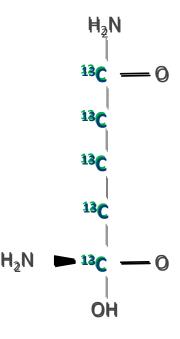
Glutamine (Gln), 1 g / kg bodyweight (BW) / d Water (W) (equal volume to Gln supplemented pigs)

Supplementation period (2-16 d), 3 times a day at 7:00, 12:00, 17:00 h

BW recorded daily

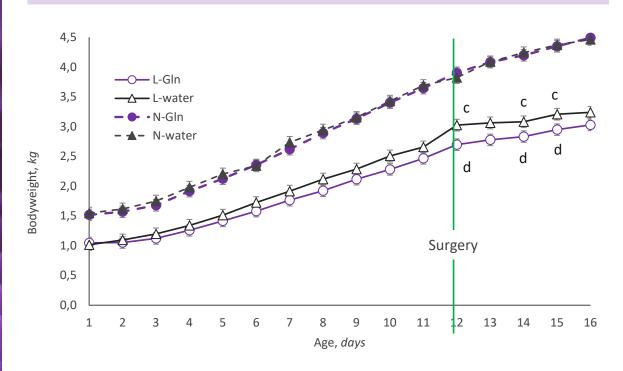
1h separation from sow

Every 30 min for 5 hours


Stay with litter during sampling (can suckle)

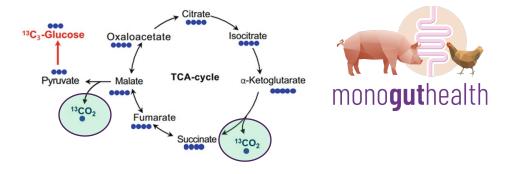
*(L), below the lowest birthweight quartile, (N); represents the middle 50th percentile, of the experimental pig facility

Stable isotope tracers: Where are the carbons?

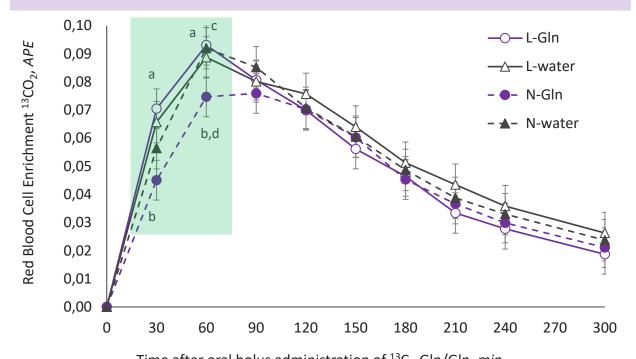


Bodyweight

 $^{^{\}mathrm{a,b}}$ Different from N piglets within Supplementation group (P < 0.05).


Average Daily Gain

(g/d)	Period	L-Gln	L-water	N-Gln	N-water
Total	1 - 16 d	133 ± 9 ^b	144 ± 9 ^b	211 ± 9 ^a	190 ± 9 ^a
Pre-Surgery	1 - 12 d	158 ± 13 ^b	180 ± 13.4b	222 ± 12.6a	206 ± 13.4a
Post-Surgery	13 - 16 d	25.2 ± 9 ^b	19.8 ± 9b	39.3 ± 9 ^a	42.4 ± 9 ^a


- Bodyweight and Average Daily Gain were always higher in N then L piglets
- On the day of surgery (12), 14 and 15 days L-water piglets were heavier than L-Gln
- Surgery negatively impacted piglet bodyweight and average daily gain

^{c,d}Different from Water piglets within Birthweight group (P < 0.05).

Catheter study: ¹³C₅-Glutamine metabolism

¹³C-Carbon dioxide enrichment in Red Blood Cells

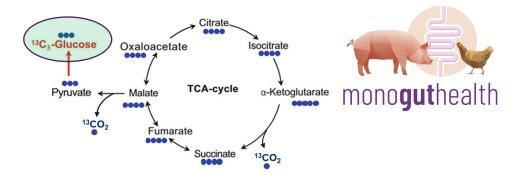
Time after oral bolus administration of ¹³C₅-Gln/Gln, min

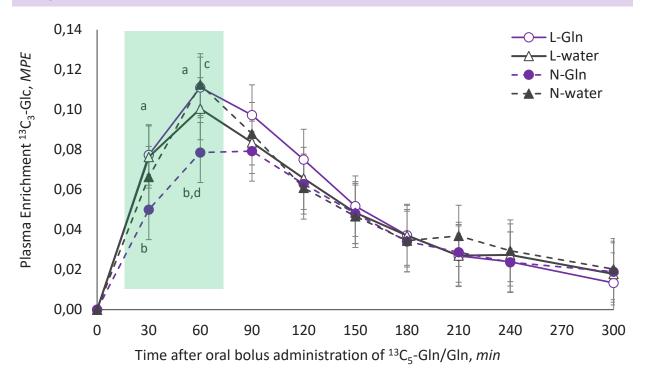
Kinetic parameters

	L-Gln	L-water	N-Gln	N-water
AUC, APE×min	15.5 ± 1.66	16.7 ± 1.73	14.3 ± 1.66	15.8 ± 1.73
E _{max} , min	0.100 ± 0.01	0.09 ± 0.01	0.08 ± 0.01	0.09 ± 0.01
T _{max} , min	62.9 ± 5.54 ^b	75.1 ± 5.83	80.3 ± 5.54 ^a	65.0 ± 5.83

• N-Gln had a higher T_{max} than L-Gln

N-Gln RBC ¹³CO₂ enrichment is lower than:


____ L-Gln at 30, 60 min
__ ▲ __ N-water at 60 min


^{a,b}Different from N piglets within Supplementation group (P < 0.05).

^{c,d}Different from Water piglets within Birthweight group (P < 0.05).

Catheter study: ¹³C₅-Glutamine metabolism

¹³C₃-Glucose enrichment in Plasma

Kinetic parameters

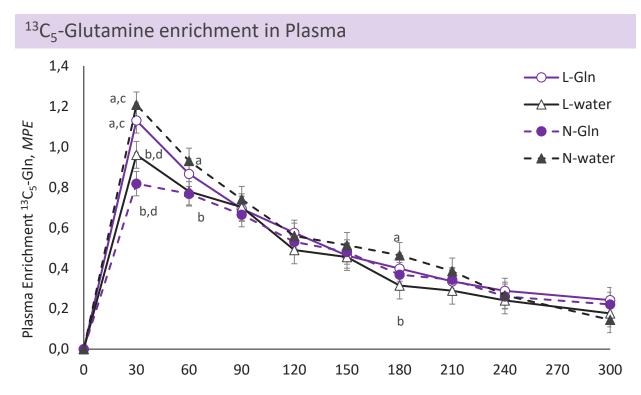
	L-Gln	L-water	N-Gln	N-water
AUC, MPE×min	15.4 ± 3.47	14.9 ± 3.53	12.9 ± 3.42	13.4 ± 3.60
E _{max} , min	0.118 ± 0.03	0.108 ± 0.03	0.086 ± 0.03	0.125 ± 0.03
T _{max} , min	59.6 ± 5.00b	63.8 ± 5.34	73.6 ± 4.80 ^a	63.3 ± 5.09

• N-Gln had a higher T_{max} than L-Gln

• N-Gln Plasma ¹³C₃-Glucose enrichment is lower than:

—o— L-Gln at 30, 60 min

▲ - N-water at 60 min


^{c,d}Different from Water piglets within Birthweight group (P < 0.05).

^{a,b}Different from N piglets within Supplementation group (P < 0.05).

Time after oral bolus administration of ¹³C₅-Gln/Gln, *min*

Kinetic parameters

	L-Gln	L-water	N-Gln	N-water
AUC, MPE×min	161 ± 14.3	141 ± 15.3	142 ± 13.8	171 ± 14.7
E _{max} , min	1.16 ± 0.09 ^a	0.983 ± 0.100b	0.893 ± 0.086b,d	1.24 ± 0.091a,c
T _{max} , min	32.4 ± 3.71	36.5 ± 3.97	37.8 ± 3.57	28.3 ± 3.79

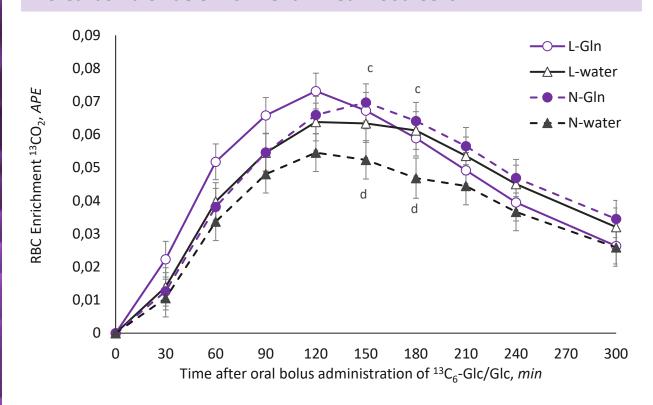
- N-Gln had a lower E_{max} than L-Gln and N-Water
- L-water had a lower E_{max} than N-Water
- L-Gln Plasma ¹³C₅ Glutamine enrichment is higher than:

N-Gln and L-water at 30 min

N-water Plasma ¹³C₅ Glutamine enrichment is higher than:

N-Gln at 30, 60 min

L-water at 30, 60, 180 min


^{a,b}Different from N piglets within Supplementation group (P < 0.05).

^{c,d}Different from Water piglets within Birthweight group (P < 0.05).

¹³C-Carbon dioxide enrichment in Red Blood Cells

Kinetic parameters

	L-Gln	L-water	N-Gln	N-water
AUC, APE×min	14.2 ± 7.80	13.6 ± 7.80	14.1 ± 7.80	11.2 ± 7.80
E _{max} , min	0.07 ± 0.008	0.07 ± 0.008	0.07 ± 0.008	0.05 ± 0.008
T _{max} , min	116 ± 8.02b	125 ± 8.47	143 ± 8.32ª	122 ± 8.47

N-Gln had a higher T_{max} than L-Gln

• N-Gln RBC ¹³CO₂ enrichment is higher than:

- ▲ - N-water at 150 and 180 min

 c,d Different from Water piglets within Birthweight group (P < 0.05).

¹³C₆-Glucose enrichment in Plasma 0,7 **─**L-Gln Plasma Enrichment ¹³C₆-Glc, *MPE* -∕_L-water 0,6 → N-Gln 0,5 → N-water 0,4 0,3 0,2 0,1 30 60 90 240 270 300 120 150 180 210 -0,1 Time after oral bolus administration of ¹³C₆-Glc/Glc, min

Kinetic parameters

	L-Gln	L-water	N-Gln	N-water
AUC, MPE×min	68.0 ± 7.80	75.4 ± 8.38	68.0 ± 7.50	59.7 ± 7.64
E _{max} , min	0.701 ± 0.07	0.656 ± 0.08	0.537 ± 0.07	0.558 ± 0.07
T _{max} , min	47.5 ± 5.28	50.3 ± 5.56	58.1 ± 5.05	50.7 ± 5.08

• No differenced in kinetic parameters

• L-Gln Plasma ¹³C₆-Glucose enrichment is higher than:

N-Gln at 30 min

L-water Plasma ¹³C₆-Glucose enrichment is higher than:

N-Water at 30, 60 min

^{a,b}Different from N piglets within Supplementation group (P < 0.05).

Tissue study: Study design

BW recorded daily

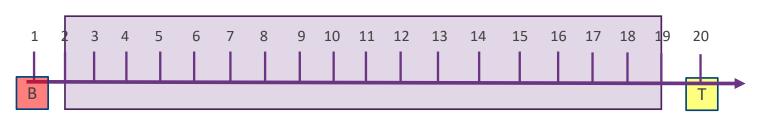
Birthweight Groups

Low birthweight (L)* (0.8-1.2 kg)

Normal birthweight (N)* (1.5 - 1.9 kg)

Males
Born to parity 2-9 sows

Supplementation
Groups
(14 piglets per litter)



L-Gln	N-Gln
L-W	N-W

N = 12 piglets per groupN-Gln = 14 pigletsTotal N = 50 pigs

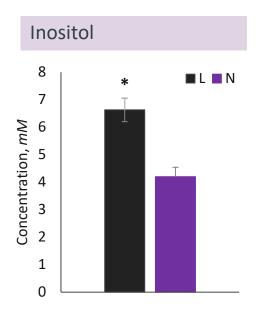
Glutamine (Gln), 1 g / kg bodyweight (BW) / d Water (W) (equal volume to Gln supplemented pigs)

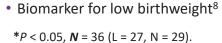
Supplementation period (2-16 d), 3 times a day at 7:00, 12:00, 17:00 h

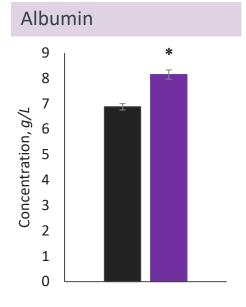
Blood sampled at 4 h after birth (metabolites)

Injected with ²H₅-Phenylanine 1h prior to measure protein synthesis

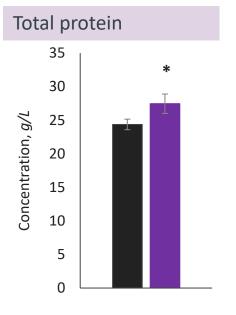
Intestine tissue sampled

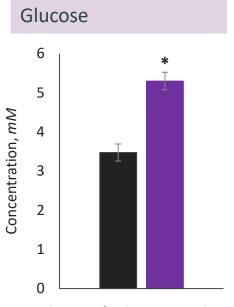

*(L), below the lowest birthweight quartile, (N); represents the middle 50th percentile, of the experimental pig facility








Plasma metabolites at 4 hours after birth



Indicator of colostrum intake

Taken together, these results provide strong evidence that the low birthweight piglets selected for this study are low birthweight

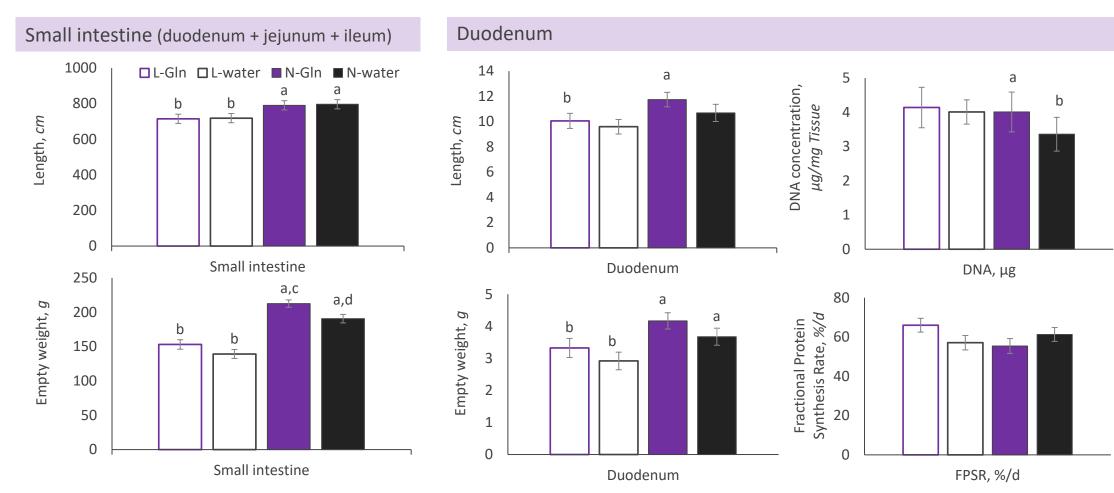
Bodyweight

• From 17 – 20 d, N-Gln piglets were heavier than N-water

Average Daily Gain

Period (g/d)	L-Gln	L-water	N-Gln	N-water	SEM
1 - 20 d	190 ^b	200 ^b	264 ^{a,c}	236 ^{a,d}	13

- Bodyweight and Average Daily Gain were always higher in N then L piglets
- Average daily gain was higher in N-Gln than N-Water


^{a,b}Different from N piglets within Supplementation group (P < 0.05).

^{c,d}Different from Water piglets within Birthweight group (P < 0.05).

Tissue study: Intestinal parameters

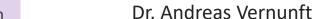
Red blood Cell Glutathione concentrations were measured. **No differences were observed.**

^{a,b}Different from N piglets within Supplementation group (P < 0.05). ^{c,d}Different from Water piglets within Birthweight group (P < 0.05).

From the studies we have conducted:

- 1. Glutamine cannot be considered as a reliable supplement for improving low birthweight piglet growth
 - Q-PIG1: L birthweight piglets supplemented with Gln were heavier than Ala supplemented
 - MGH Catheter: L birthweight piglets supplemented with water were heavier than Gln supplemented
 - <u>MGH Tissue</u>: N birthweight piglets supplemented with Gln were heavier than Water supplemented
- 2. <u>MGH Catheter:</u> Observed changes in glutamine and glucose metabolism were not associated with birthweight. Slower enrichment in N-Gln than L-Gln.... *Why?*
- 3. <u>MGH Tissue</u>: Increased bodyweight and average daily gain is associated with a heavier small intestine and higher duodenal DNA concentration in N-Gln than N-water..... *It worked?*

Acknowledgements


PhD Students

Q-PIG1

MonoGutHealth

Daria de Leonardis

Dr. Solvig Görs

Mariagrazia Cavalleri

Kirsten Karpati

Elke Wünsche

Susanne Dwars

Birgit Mielenz

Marianne Zenk

Zeyang Li

8th EAAP International Symposium on Energy and Protein Metabolism and Nutrition (ISEP 2025)

15 – 18 September 2025 Rostock-Warnemünde, Germany

THANK YOU

Do you have any questions?

Location: Workgroup "Nutritional Physiology"

Research Institute for Farm Animal Biology

Dummerstorf, Germany

Presenter: Quentin Sciascia, Ph.D.

Email: sciascia@fbn-dummerstorf.de

Phone: +49 38208 68-681

Website: www.fbn-dummerstorf.de/en/

References

- 1. Augere-Granier, Marie-Laure. "The EU pig meat sector." (2020).
- 2. Knap PW, Knol EF, Sørensen AC, Huisman AE, van der Spek D, Zak LJ, Granados Chapatte A and Lewis CRG (2023) Genetic and phenotypic time trends of litter size, piglet mortality, and birth weight in pigs. Front. Anim. Sci. 4:1218175. doi: 10.3389/fanim.2023.1218175.
- 3. Quiniou, Nathalie, J. Dagorn, and D. Gaudré. "Variation of piglets' birth weight and consequences on subsequent performance." Livestock production science 78.1 (2002): 63-70.
- 4. Declerck, Ilse, et al. "Long-term effects of colostrum intake in piglet mortality and performance." Journal of Animal Science 94.4 (2016): 1633-1643.
- 5. Stange, K., et al. "Low birth weight influences the postnatal abundance and characteristics of satellite cell subpopulations in pigs." Scientific reports 10.1 (2020): 6149.
- 6. Fix, J. S., et al. "Effect of piglet birth weight on survival and quality of commercial market swine." Livestock Science 132.1-3 (2010): 98-106.
- 7. Wellington, Michael O., et al. "Serum metabolomic characterization in pigs in relation to birth weight category and neonatal nutrition." Journal of Animal Science 101 (2023): skac386.
- 8. Nissen, Pia Marlene, et al. "Metabolomics reveals relationship between plasma inositols and birth weight: possible markers for fetal programming of type 2 diabetes." BioMed research international 2011.1 (2011): 378268.
- 9. Santos, Thaís Garcia, et al. "Intrauterine growth restriction and its impact on intestinal morphophysiology throughout postnatal development in pigs." Scientific Reports 12.1 (2022): 11810.
- 10. Wu, Guoyao, et al. "Triennial Growth Symposium: important roles for L-glutamine in swine nutrition and production." Journal of animal science 89.7 (2011): 2017-2030.
- 11. Li, Zeyang, et al. "Glutamine supplementation moderately affects growth, plasma metabolite and free amino acid patterns in neonatal low birth weight piglets." *British Journal of Nutrition* 128.12 (2022): 2330-2340.
- 12. Schregel, Johannes, et al. "Effects of oral glutamine supplementation on jejunal morphology, development, and amino acid profiles in male low birth weight suckling piglets." Plos one 17.4 (2022): e0267357.
- 13. Yang, X. F., et al. "Improved milk glutamine level and growth performance of suckling piglets by glutamine supplementation in maternal diet." *Annals of Animal Science* 18.2 (2018): 441-452...
- 14. Wu, Guoyao, et al. "Glutamine and glucose metabolism in enterocytes of the neonatal pig." *American Journal of Physiology-Regulatory, Integrative and Comparative Physiology* 268.2 (1995): R334-R342
- 15. de Aquino, R. Santos, et al. "Glutamine and glutamate (AminoGut) supplementation influences sow colostrum and mature milk composition." *Livestock Science* 169 (2014): 112-117.
- 16. Xiao, Ying-ping, et al. "Response to weaning and dietary L-glutamine supplementation: metabolomic analysis in piglets by gas chromatography/mass spectrometry." *Journal of Zhejiang University Science B* 13 (2012): 567-578.
- 17. Quesnel, H., et al. "Physiological traits of newborn piglets associated with colostrum intake, neonatal survival and preweaning growth." animal 17.6 (2023): 100843.
- 18. Haynes, Tony E., et al. "L-Glutamine or L-alanyl-L-glutamine prevents oxidant-or endotoxin-induced death of neonatal enterocytes." Amino acids 37 (2009): 131-142.

Image 1: Beaumont, M., Blachier, F. (2020). Amino Acids in Intestinal Physiology and Health. In: Wu, G. (eds) Amino Acids in Nutrition and Health. Advances in Experimental Medicine and Biology, vol 1265. Springer, Cham. https://doi.org/10.1007/978-3-030-45328-2_1

Image 2: Nguyen, Trang TT, et al. "Methodological Approaches for Assessing Metabolomic Changes in Glioblastomas." Autophagy and Cancer: Methods and Protocols (2022): 305-328.

