

HenTrack

UNIVERSITÄT BERN

Improving breeding programs with superior behavior and welfare phenotypes

Michael J Toscano, PhD Universtität Bern

Michael.toscano@unibe.ch
Group Leader
Center for Proper Housing of Poultry and Rabbits

#293: A genome-wide association study to identify novel genomic regions associated for aviary with winter garden usage by laying hens K. Hoeksema, C. Baes, S. Gebhardt-Henrich, M. Petelle, M. Toscano, B. Makanjuola

Poultry Science

Volume 103, Issue 3, March 2024, 103369

Genetic parameter estimates for the use of an aviary with winter garden by laying hens

<u>Bayode O. Makanjuola</u> *, <u>Sabine G. Gebhardt-Henrich</u> †, <u>Michael J. Toscano</u> †,

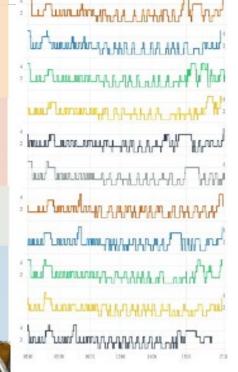
Christine F. Baes * [‡] ♀ ☒

https://doi.org/10.1016/j.psj.2023.103369

Breeding for cage-free housing

Current methods are based on small groups/individuals

Behavioral Structure (Individual profiles)


Zone 5: Highest Tier Feed, water, perches Nighttime roosting

Zone 4: Middle Tier Nestboxes, perches

Zone 3: Lowest Tier Feed, water, perches

Zone 2: Floor

Zone 1: Wintergarden LitteWater, perches

Article | Open Access | Published: 17 August 2018

Finding hens in a haystack: Consistency of movement patterns within and across individual laying hens maintained in large groups

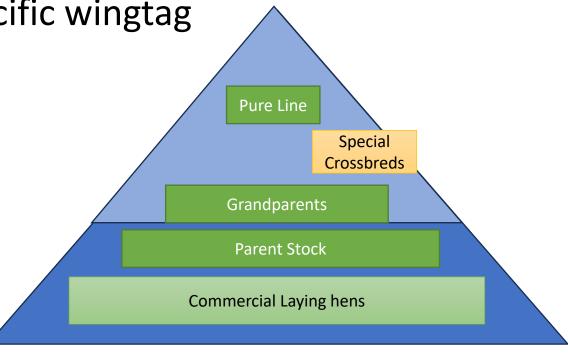
C. Rufener, L. Berezowski, E. Maximiano Sousa, Y. Abreu, L. Asher & M. J. Toscano

Scientific Reports 8, Article number: 12303 (2018) | Cite this article

HenTrack Aims

> To provide methodologies for the phenotyping and selection of individual laying hens that perform robustly within cage-free housing systems

- Partnered with
- Lohmann Breeders
- Hendrix Genetics

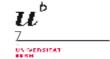

Methods

4800 hen chicks reared on site (per flock)

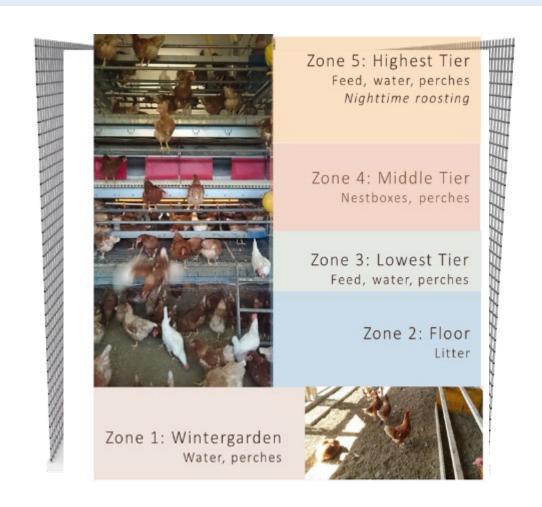
Pure Line matings

Full and half sibs with sire-specific wingtag

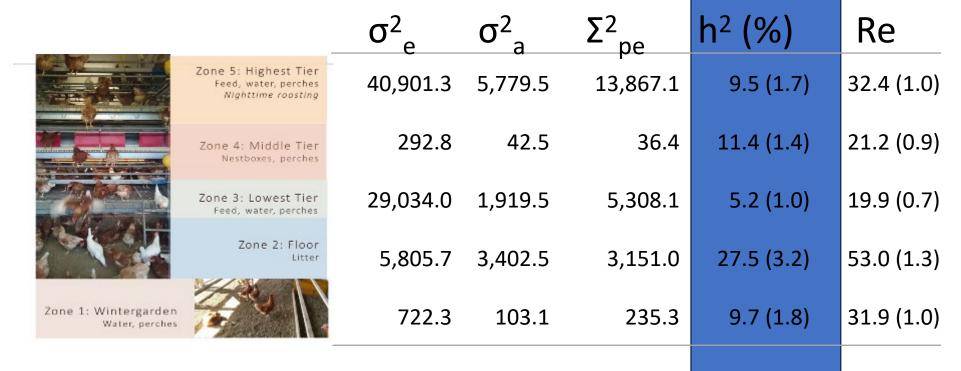
Hendrix and Lohmann



Methods


Sires

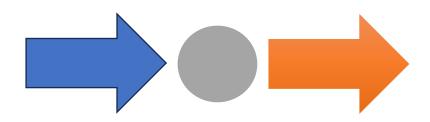
1	2	3	 25	
Hen1.1	Hen2.1	Hen3.1	Hen25.1	X 5 pens/cross
Hen1.2	Hen2.2	Hen3.2	Hen25.2	•
Hen1.3	Hen2.3	Hen3.3	Hen25.3	
Hen1.4	Hen2.4	Hen3.4	Hen25.4	10 Lohmann pens
Hen1.5	Hen2.5	Hen3.5	Hen25.5	10 Hendrix pens
Hen1.6	Hen2.6	Hen3.6	Hen25.6	•
Hen1.7	Hen2.7	Hen3.7	Hen25.7	
Hen1.8	Hen2.8	Hen3.8	Hen25.8	3 flocks
Hen1.9	Hen2.9	Hen3.9	Hen25.9	


Housing and Tracking

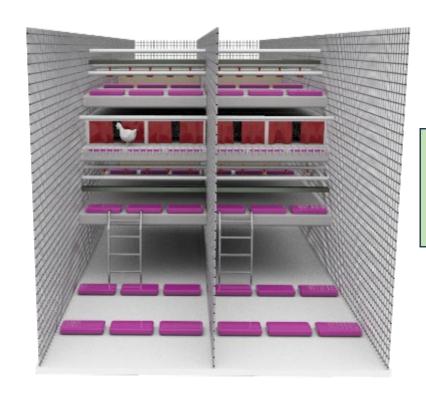
- Tracked for entire laying period
 - 85-95 WOA
 - Now testing in rear as well
- Entry/exit into each area for each hen
 - Upper tier
 - Middle tier
 - Lower tier
 - Floor
 - Wintergarden
- Health assessments
 - Keel bone fracture (30-45 WoA)
 - Feather quality/Toe&foot health (50-70 WoA)

Results so far . . . Durations

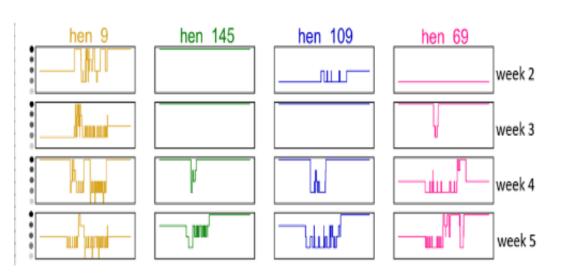
Poultry Science
Volume 103, Issue 3, March 2024, 103369



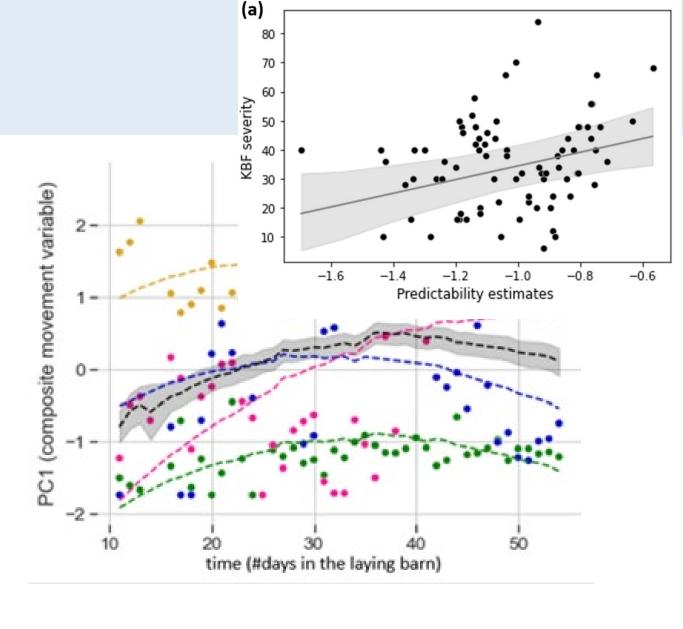
Genetic parameter estimates for the use of an aviary with winter garden by laying hens


Better metrics with sensor technology

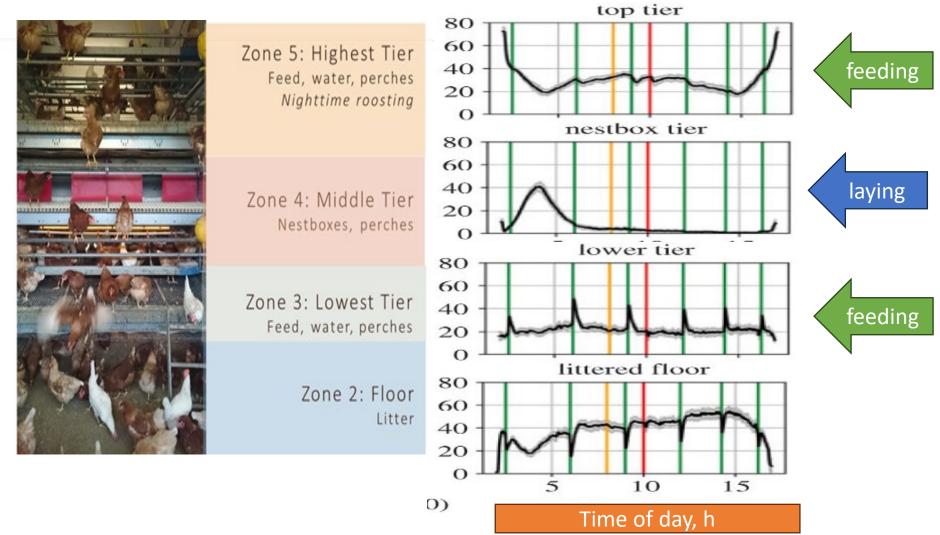
- Egg size, body mass, Movement predictability?
- Far greater resolution and detail
- Proxies when direct measures are not possible
 - Disturbing birds with invasive procedure (bone fracture)
 - Difficulties to see (feeding)
- Indicators of:
 - Disease/injury/poor welfare
 - Style/ability to recover


New Phenotypes

Antennae/Zone Time/Date



Metrics of variation



- Duration in each zone
- Transitions in each zone
- Vertical distance per hour
- Wintergarden use (0-15 min)
- Sleeping position

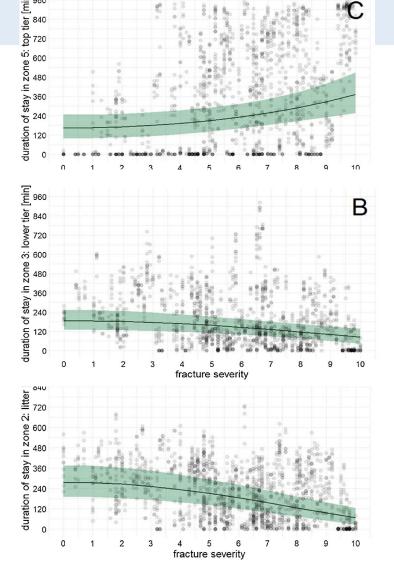
New phenotypes – Proxies

Refuges as phenotypes

Zone 5: Highest Tier Feed, water, perches Nighttime roosting

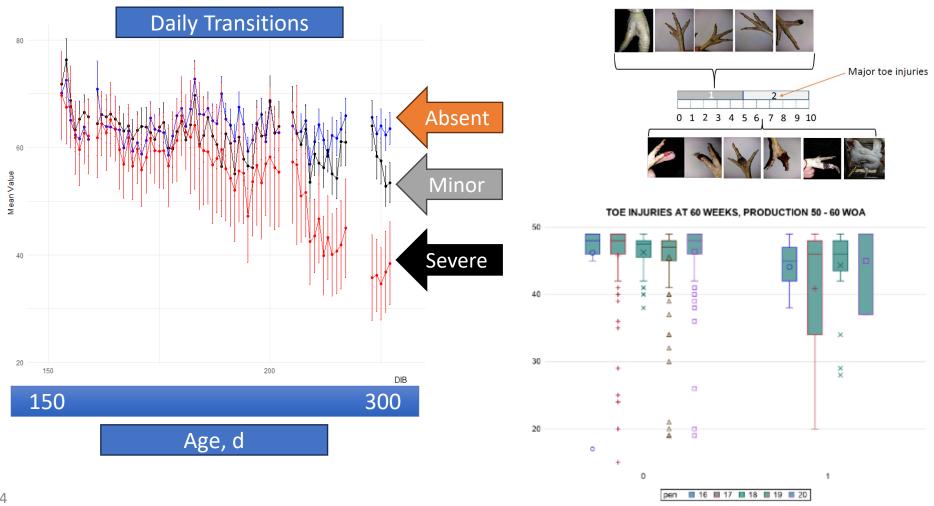
Zone 4: Middle Tier Nestboxes, perches

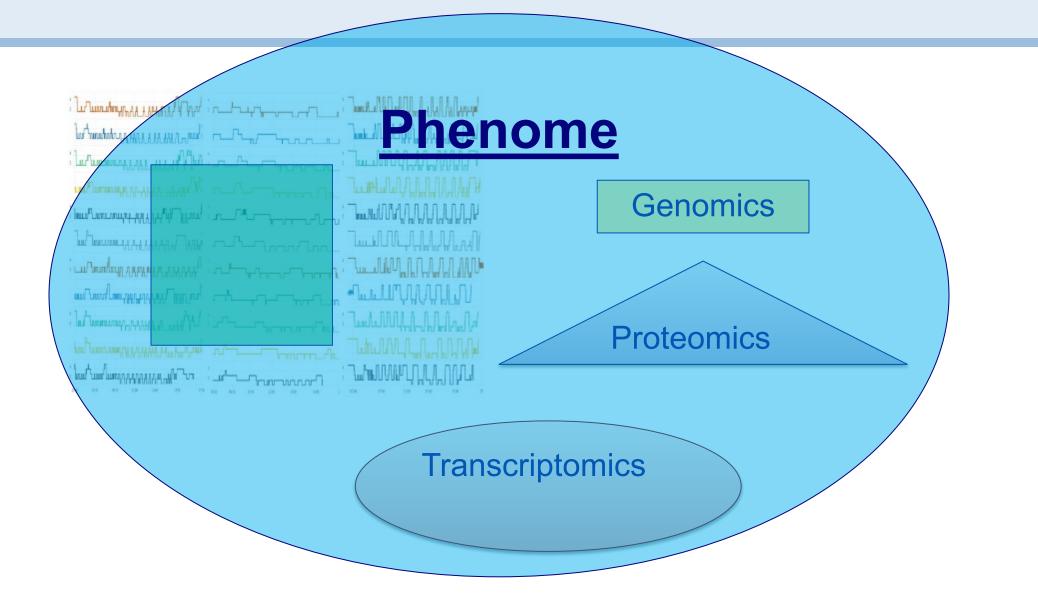
Zone 3: Lowest Tier Feed, water, perches



Zone 2: Floor Litter

Zone 1: Wintergarden Water, perches





Toe injuries:

Movement & Egg production (proxy)

A important part of the phenome

Questions?

Research Aims (Long term)

- To investigate movement and location patterns of individual hens within commercially –relevant, cage-free housing
- Explore factors that control the observed variation
 - Rearing and development
 - Environmental factors, e.g. housing type
 - Genetic and epigenetic
 - Disease states
- Implications for animal welfare
 - Resilience and recovery
 - Positive and negative affect

Specific Project Objectives

- Establish heritability of basic movement metrics
- Explore relationships between movement and health characterizations

Methods

Laying phase

- 1,124 pullets from 25 of the 100 sires selected for observation
 - Variation in feed efficiency and feather coverage
- Fitted with Radio Frequency Identification transponder leg ring (125 kHz)
- Allocated to five pens of 225 birds
- Stratified for sire and rearing pen
- Tracked until 61 WoA

Methods

Sires

1	2	3		25					
Hen1.1	Hen2.1	Hen3.1		Hen25.1					
Hen1.2	Hen2.2	Hen3.2		Hen25.2					
Hen1.3	Hen2.3	Hen3.3		Hen25.3					
Hen1.4	Hen2.4	Hen3.4		Hen25.4					
Hen1.5	Hen2.5	Hen3.5		Hen25.5					
Hen1.6	Hen2.6	Hen3.6		Hen25.6					
Hen1.7	Hen2.7	Hen3.7		Hen25.7					
Hen1.8	Hen2.8	Hen3.8		Hen25.8					
Hen1.9	Hen2.9	Hen3.9		Hen25.9					

X 5 pens

Analysis

- Multivariate mixed model using repeated records to estimate genetic parameters for zone duration
- Best linear unbiased prediction (**BLUP**; Henderson, 1975) to derive the genomic relationship matrix
 - genomic best linear unbiased prediction (GBLUP) VanRaden (2008).
 - performed using the restricted maximum likelihood method in ASReml 4.1. (Gilmour et al., 2015)

Multivariate mixed model

$$y = Xb + Za + Wpe + e$$

- y: vector of the five measured traits (duration in each zones) (within hens)
- b: vector of fixed effects
 - overall mean
 - days since transfer
 - pen
 - number of visits to the zone
- *a:* vector of random additive genetic effect
- pe: vector of random permanent environment effect
- e: random error term
- X, Z, and W: incidence matrices relating the fixed effects, random genetic effect and random permanent environment effect to the phenotype

Going forward

- Bigger
- Better
- Cooler

New PhD opportunity

- Tracking in rearing and continuing into lay
- Development of novel phenotypes
 - Egg laying
 - Feeding response
 - Wintergarden usage

Many thanks

All ZTHZ, past and present

- Ariane Stratmann
- Sabine Gebhardt
- Yamenah Gomez
- Markus Schwab
- Thomas Heinzel
- Satar Abdel Rahmen
- Christina Rufener
- Sabine Vögeli
- Edi Burkhard
- Matthew Petelle
- Camille Montalcini
- Laura Candelotto
- Klara Grethen

Collaborators and Partners

- Peta Taylor and Maxine Fogarty
- Bernhard Voelkl
- John Berezowski
- Filipe Miguel Maximiano
- Yandy Jorge
- · Carlos Guerrero Bosagna
- Fábio Pértille
- Lucy Asher
- · Michael Gantner
- Florien Beiser
- Teun van de Braak
- BramVisser
- Jeroen Vischer

Funders

- Federal Food Safety and Veterinary Office
- Swiss National Science Foundation
- Australian Eggs
- Horizon 2020 Marie Sklowdowska-Curie Innovative Training Networks
- The Open Philanthropy Project
- Egg Industry Center
- Hendrix Genetics

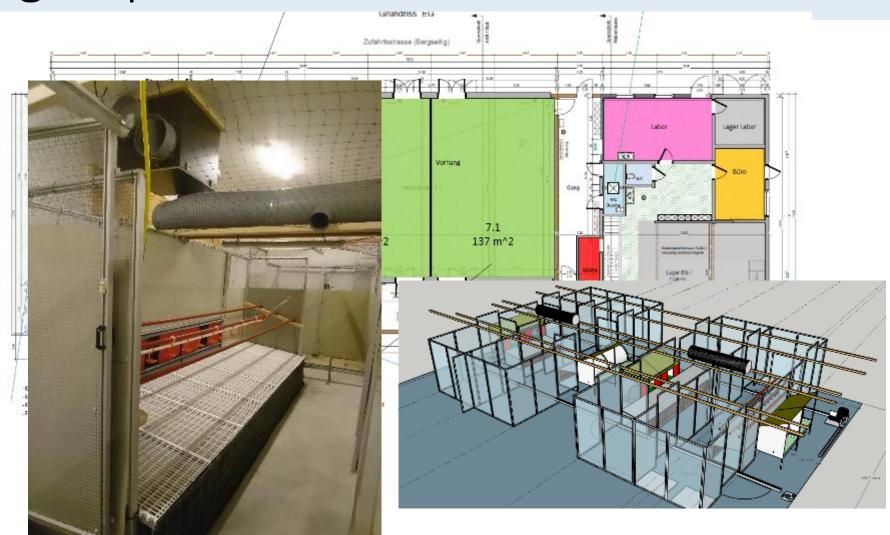
Extras

Theory to practice

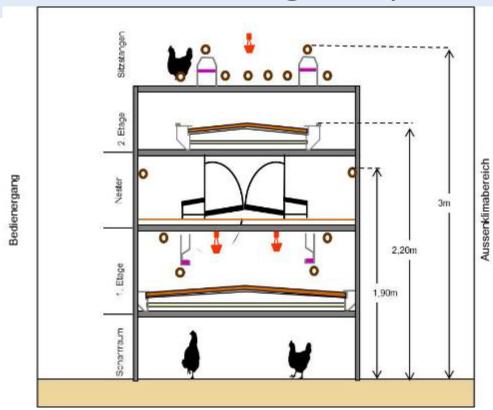
Small groups (5-120+ hens / group)

- Adaptable pens
- Focused observations

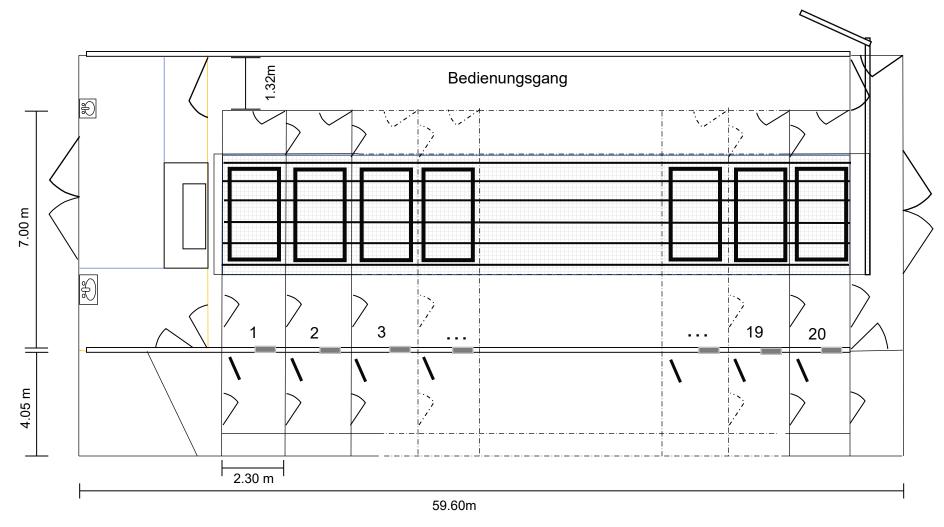
Medium sized groups (200- 360 hens / group)


- Commercially relevant
- Focused observations
- Control over conditions

Commercial barns (2000+ hens)


- Good producer relationships
- Possibilities for limited observations

Small groups



Medium sized groups

Replicate pens (200-225 hen/pen)

Commercial farms

Good relationships with producers (12-30 farms)

- Depopulation
- Piling
- Toe Pecking

Multiple projects, larger datasets

HenTrack

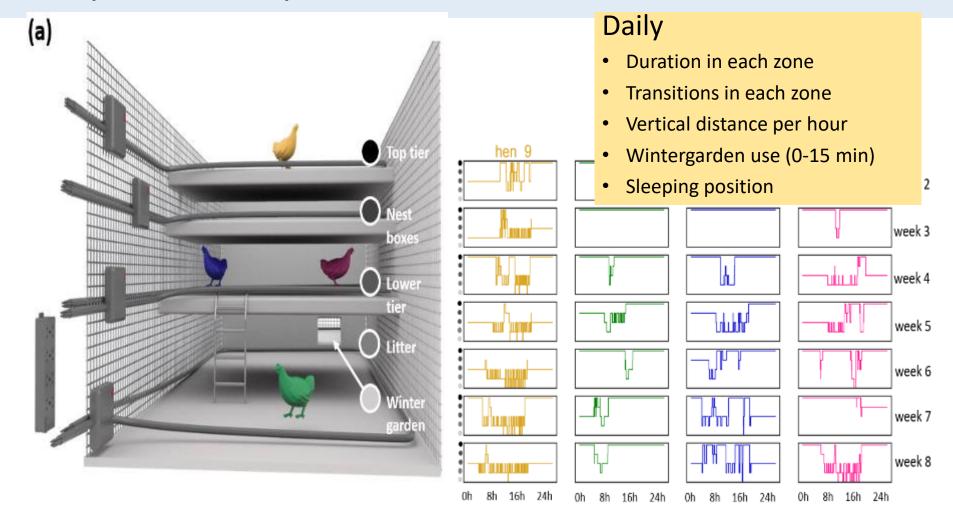
- 4,500 hens
- Continuous tracking
- 420+ days

Quantifying variation seen

An unending task

Matt Petelle

Camille Montalcini


Methods

- 80 hens tracked continuously
- 54 days following transfer to the laying barn
- Bolegg Terrace aviary
- Low-power, active tracking system
 - Gantner Solutions GmbH, Schruns, Austria
 - Transponders in backpacks

Principal Component Movement

Methods

- Aggregated daily variables by extracting a linear composite variable from a correlation-based principal component analysis (PCA) using the psych package in R
- Included first day only of each week to account for isolated missing data points
- Observations projected onto the subspace spanned by PC1 to obtain daily movement scores for each hen
 - Average
 - Plasticity
 - Intra-individual variation

Principal Component (Movement)

	PC1	PC2	PC3	
daily percentage of duration in the top tier	-0.90	0.08	0.29	
daily percentage of duration in the nestbox tier	0.16	0.67	-0.02	
daily percentage of duration in the lower tier	0.73	-0.17	-0.36	
daily percentage of duration in the litter floor	0.75	-0.25	-0.36	
number of stays in the top tier /h	0.10	0.81	0.32	
number of stays in the nestbox tier /h	0.33	0.88	0.19	
number of stays in the lower tier /h	0.92	0.20	-0.16	
number of stays in the litter floor /h	0.93	-0.20	-0.02	
sleeping height	-0.31	0.11	0.30	
vertical travelled distance /h	0.83	0.48	-0.02	
daily percentage of duration in the winter garden	0.48	-0.32	0.70	
Number of stays in the winter garden /h	0.57	-0.32	0.65	
 went in the winter garden (yes/no)	0.46	-0.27	0.56	

Methods

Individual-level estimates extracted

- intercept, temporal plasticity, and predictability
- increasing complexity of linear mixed-effects model
 - Slope
 - Intercept
- "best linear unbiased prediction" (BLUPS) to estimate random effects

Predictability: extended the RS2 model to allow estimations of residual intra-individual variation using a double hierarchical model

Results

44% of variance (after controlling for fixed effects) attributed to differences between individuals

Hens with initially lower movement increased their movement more rapidly than hens with higher initial movement.

- negative correlation between individual intercepts and linear random slopes
 - 0.79, bootstrap 95% CI 0.82 to 0.78
- positive correlation between random intercept and quadratic random slope
 - 0.41, bootstrap 95% CI 0.37–0.54
- negative correlation between linear and quadratic random slopes
 - 0.89, bootstrap 95% CI 0.93 to 0.89

