Modeling interactions within dairy farms using regular vine-copula models

Naomi Ouachene $^{(1)}$, Claudia Czado $^{(2)}$, Michael S. Corson $^{(1)}$, **Tristan Senga Kiessé^{(1)}**

(1) UMR SAS, PHASE Division, INRAE

(2) School of Computation, Information and Technology & Munich Data Science Institute, Technical University of Munich, Germany

75th EAAP Annual Meeting, Florence (Italy), September 3, 2024

Introduction

Context

- ➤ 14.5-18% of global greenhouse gas (GHG) emissions come from **livestock production**, of which 75% are attributed to **ruminants** [5]
- ➤ Interactions among variables (e.g., milk production, GHG emissions, management practices, weather events) are complex to model [11]
- > Simulation models exist (e.g., IFSM [13], DairyWise [14]), but they
 - > need a large amount of input data [12] and pre-defined relations between variables [2] to provide output
 - > are not useful for characterizing the type and shape of dependence structures that naturally exist among variables

Problem

How to **characterize** dependences (sometimes hidden or indirect) among descriptive variables of **several types** of farms ?

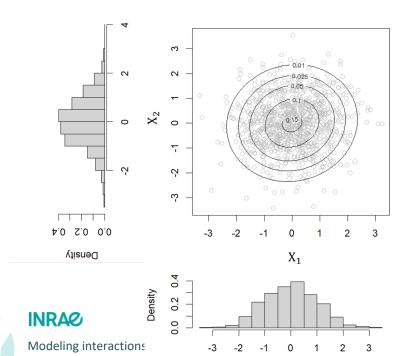
Goal

To provide a new way to describe **interactions** among a set of descriptive variables of farms by taking advantage of properties of the **copula method**.

Data

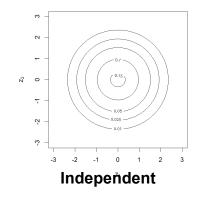
- > Data from the LIFE Carbon Dairy project of IDELE (French Livestock Institute) using the CAP'2ER method [7]
- > Raw and calculated variables for 2347 dairy farms surveyed in 2013
- > Response variables:
 - Milk production
 - \triangleright Greenhouse gas emissions (CO₂, CH₄ and N₂O)
- Continuous explanatory variables, such as:
 - Dry matter in the ration
 - Quantity of concentrated feed fed
 - Size of the farm
 - Number of animals
 - Meteorological indices¹
- Discrete explanatory variables, such as:
 - > Type of farm
 - Dominant cattle breed
 - Building type

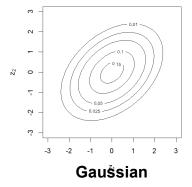
The SAFRAN climate database, provided by Météo-France, was downloaded via the SICLIMA platform, developed by the AgroClim unit of INRAE

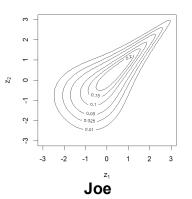


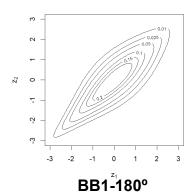
> Vine copulas (1): definition of copulas

- \triangleright Let F_1, \dots, F_d be cdfs of d continuous random variables X_1, \dots, X_d and F the joint cdf of $X = (X_1, \dots, X_d)$
- > According to Sklar's theorem [15], there exists a unique copula


$$C: [0,1]^2 \to [0,1]$$
 such as $F(X_1, \dots, X_d) = C(F_1(x_1), \dots, F_d(x_d))$


A copula model C formalizes the dependence structure between random variables, regardless of their distribution(s) [10, 6].




September 3, 2004 / 7

Contours of different types of bivariate copulas [8]

els

hene et al.

> Vine copulas (2): pair-copula construction

Vines are a way to construct chains of bivariate copulas: the pair-copula construction (PCC) [1, 4]

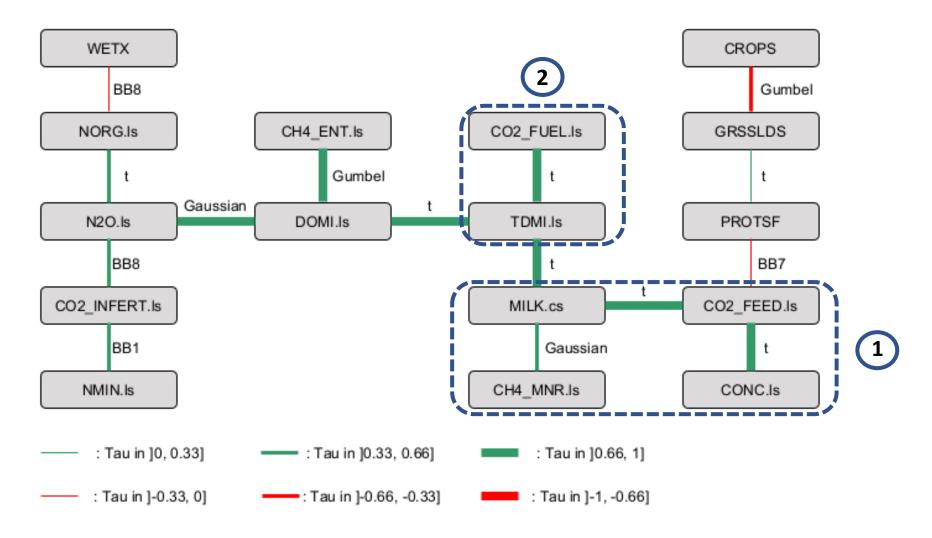
Example for X_1, X_2, X_3

The joint density f of X_1, X_2, X_3 is defined such that [15, 4]

$$f = f_1 \times f_2 \times f_3 \times c_{12} \times c_{13} \times c_{23;1}$$

- $\succ f_1, f_2, f_3$ are marginal densities of the 3 continuous random variables
- Vine copulas are chains of bivariate copulas that include recursive conditioning and allow for a non-unique decomposition [3]

Procedure for selecting the best R-vine structure by fitting the first tree to the strongest dependencies (rvinecopulib R package [9])

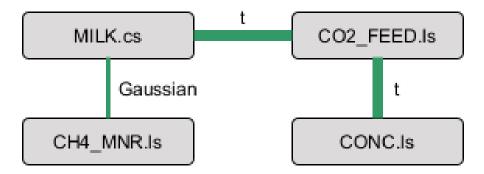

> Application

Description of the variables analyzed for 2347 dairy farms surveyed in 2013. LU: livestock unit, UAA: utilized agricultural area (ha), CH₄: methane, CO₂: carbon dioxide

Variable	Description (unit)	Standardized by
MILK.cs	Milk production (l.cow ⁻¹)	UAA
CH4_ENT.ls	Enteric CH ₄ emissions (kg CO ₂ -eq.LU ⁻¹)	UAA
CH4_MNR.ls	CH₄ emissions due to manure management (kg CO₂-eq.LU ⁻¹)	UAA
CO2_FEED.ls	CO ₂ emissions due to the purchase of feed (kg CO ₂ -eq.LU ⁻¹)	UAA
CO2_FUEL.ls	CO ₂ emissions due to on-farm fuel consumption (kg CO ₂ -eq.LU ⁻¹)	UAA
CO2_INFERT.Is	CO ₂ emissions due to the purchase of inorganic fertilizers (kg CO ₂ -eq.LU ⁻¹)	UAA
N2O.ls	Total nitrous oxide emissions (kg CO₂-eq.LU ⁻¹)	UAA
CROPS	Area of crops (proportion of the UAA)	-
GRSSLDS	Area of grasslands (proportion of the UAA)	-
NMIN.Is	Inorganic nitrogen fertilizers applied (kg.ha ⁻¹)	LU
NORG.Is	Organic nitrogen fertilizers applied (kg.ha ⁻¹)	LU
TDMI.ls	Total dry matter ingested (kg.LU ⁻¹)	UAA
DOMI.Is	Digestible organic matter in the ration (kg.LU ⁻¹)	UAA
CONC.ls	Concentrated feed (kg.LU ⁻¹)	UAA
PROTSF	Protein self-sufficiency (proportion)	-
WETX	Soil wetness index of the area (proportion)	-

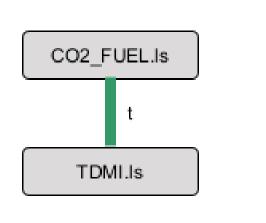
> Results (1)

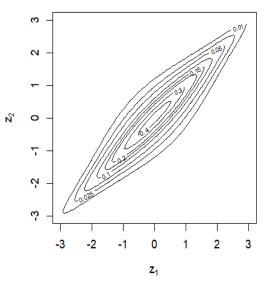
First tree of the R-vine (all farms included)

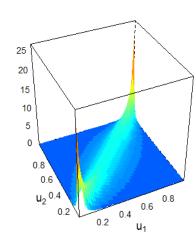


> Results (2)

Dependences between:

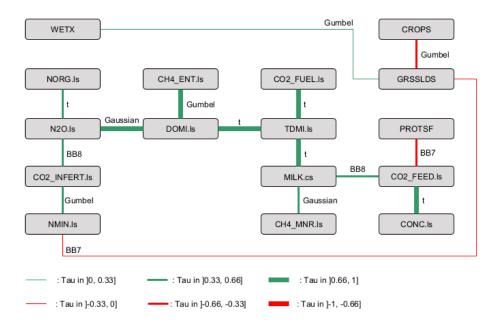

- ➤ CO₂ emissions due to the purchase of feed [CO2_FEED.ls] and the amount of concentrated feed fed to animals [CONC.ls]:
 - > a large proportion of purchased feed would be concentrated feed



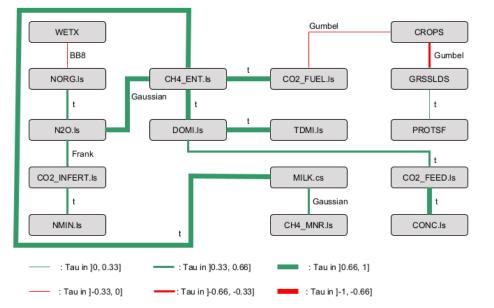

- ➤ milk production [MILK.cs] and CH₄ emissions associated with manure management [CH4_MNR.ls]:
 - > strategies to produce milk influence herd management, time spent inside the barn and the type of manure management

> Results (3)

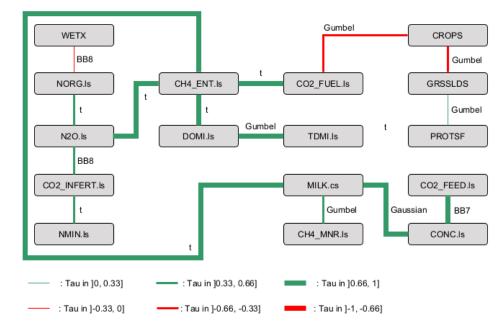
Direct dependence between the amount of dry matter ingested [TDMI.Is] and the CO₂ emissions due to fuel consumption [CO2_FUEL.Is]:


> the amount of dry matter ingested comes from the forage yield, which requires a certain amount of fuel consumption

> Results (4)

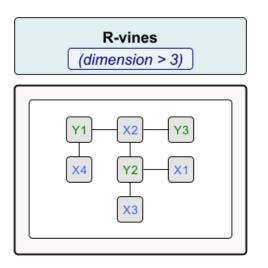

First tree of the R-vine

(farms grouped by milk production per cow)



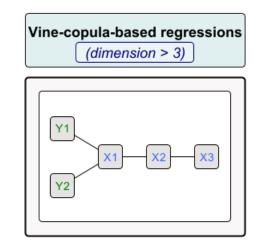
A: milk production ≤ 7500 kg per cow (799 farms)

Differences in dependence structures due to differences in farm productivity


B: milk production of 7500-8500 kg per cow (819 farms)

C: milk production > 8500 kg per cow (729 farms)

Conclusion & Perspectives


Conclusion

- Map and characterize multiple dependences by taking advantage of bivariate-copula properties
- > Capture the behavior of **non-conventional** farms using extreme-value copulas
- Assessments of **all farms** and **by type of farm**, which showed differences as a function of management strategies

Perspectives

 \triangleright Identify variables X_i that explain response variables Y_i the most

References

- [1] Kjersti Aas et al. "Pair-copula constructions of multiple dependence". In: Insurance: Mathematics and Economics 44.2 (2009), pp. 182–198. ISSN: 0167-6687.
- [2] Xavier Chardon. "Evaluation environnementale des exploitations laitières par modélisation dynamique de leur fonctionnement et des flux de matière : Développement et application du simulateur MELODIE". Ph.D. thesis. AgroParisTech (2008).
- [3] Claudia Czado. Analyzing Dependent Data with Vine Copulas. 1st ed. Springer Cham (2019).
- [4] Claudia Czado and Thomas Nagler. "Vine copula based modeling". In: Annual Review of Statistics and Its Application 9 (2022), pp. 453–477.
- [5] Bertrand Dumont et al. "Livestock farming in Europe: a diversity of services and impacts". In: INRA Productions Animales 30.4, SI (2017), pp. 271–272. ISSN: 0990-0632.
- [6] Christian Genest and Anne-Catherine Favre. "Everything you always wanted to know about copula modeling but were afraid to ask". In: Journal of Hydrologic Engineering 12.4 (2007), pp. 347–368.
- [7] IDELE. Calcul Automatisé des Performances Environnementales pour des Exploitations Responsables. URL: https://cap2er.fr/Cap2er/.
- [8] Saralees Nadarajah, Emmanuel Afuecheta, and Stephen Chan. "A Compendium of Copulas". In: Statistica 77.4 (2017), pp. 279–328.
- [9] Thomas Nagler and Thibault Vatter. rvinecopulib: high performance algorithms for vine copula modeling. R package version 0.6.3.1.1. 2020. URL: https://CRAN.R-project.org/package=rvinecopulib.

References

- [10] Roger Nelsen B. 2nd ed. An Introduction to Copulas. Springer Series in Statistics (2006).
- [11] Sylvain Pellerin et al. "Identifying cost-competitive greenhouse gas mitigation potential of French agriculture". In: Environmental Science & Policy 77 (2017), pp. 130–139. ISSN: 1462-9011.
- [12] C. Rosenzweig et al. "The Agricultural Model Intercomparison and Improvement Project (AgMIP): Protocols and pilot studies". In: Agricultural and Forest Meteorology 170 (2013), pp. 166–182. ISSN: 0168-1923.
- [13] Clarence Alan Rotz et al. The Integrated Farm System Model. USDA ARS Washington, DC (2022).
- [14] RLM Schils et al. "DairyWise, a whole-farm dairy model". In: Journal of Dairy Science 90.11 (2007), pp. 5334–5346. ISSN: 0022-0302.
- [15] Abe Sklar. "Fonctions de répartition à n dimensions et leurs marges". In: Publication de l'Institut de Statistique de L'Université de Paris 8 (1959), pp. 229–231.

p. 13