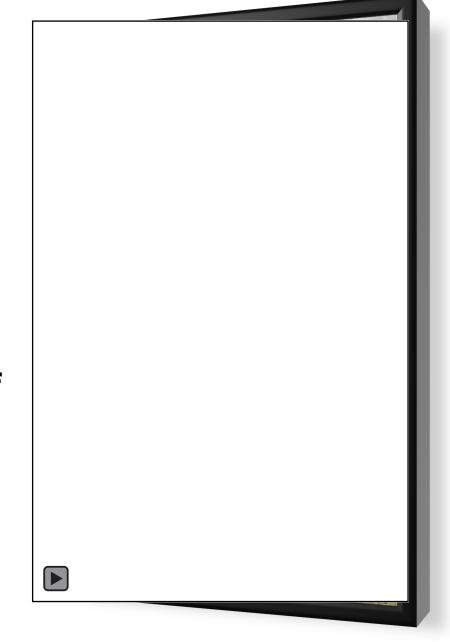


Global forecasted scenarios of THI and HLI anomalies

Giampiero Grossi, Andrea Vitali, Nicola Lacetera

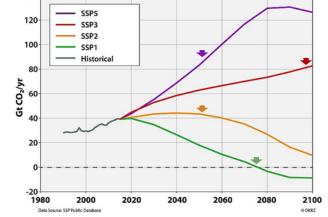

DIPARTIMENTO
DI SCIENZE AGRARIE
E FORESTALI

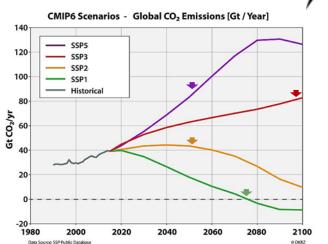
Global risk of heat stress for cattle

Heat stress in dairy cattle occurs when the animal's body temperature increases as a result of heat accumulated for physiological functions such as maintenance, production, reproduction and heat accumulated from the environment.

Conditions of heat stress increase risk of death and negatively impact on health, milk yield and reproduction efficiency.

How are climate projections developed?


Different development paths of society were designed and form the basis of the Shared Socioeconomic Pathways (**SSPs**)



Modelled climate projections

 ⑤ °C 7		
6		
5 ———		SSP5
4		SSP3
3 —		SSP2
2		SSP1
1		
0 ———	2050	2100

	SSP1:	The Sustainability	Pathway
--	-------	--------------------	---------

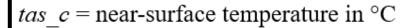
SSP2: The Middle of the Road

> SSP3: Regional Rivalry

> SSP5: Fossil-fueled Development

SSP	Scenario	Estimated warming (2041-2060)	Estimated warming (2081-2100)
SSP1	low GHG emissions CO2 emissions cut to net zero around 2075	1.7°C	1.8°C
SSP2	intermediate GHG emissions CO2 around current level until 2050 , then falling but not reaching net zero by 2100	2.0°C	2.7°C
SSP3	high GHG emissions CO2 emissions double by 2100	2.1°C	3.6°C
SSP5	very high GHG emissions CO2 emissions triple by 2075	2.4°C	4.4°C

The Temperature Humidity Index (THI)


The temperature-humidity index (THI) combines values of air temperature and humidity, and it is widely used to express the level of thermal stress. It is particularly effective in representing the climatic conditions experienced by housed livestock, making it a key indicator in animal husbandry.

THI equation

$$THI = (1.8 \times tas_c) + 32 - (0.55 - 0.55 \times hurs) \times [(1.8 \times tas_c + 32) - 58]$$

Where:

hurs = near-surface relative humidity (%)

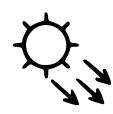
The Heat Load Index (HLI)

The Heat Load Index (HLI) brings together all the weather parameters that impact the environmental load on an animal: Temperature, radiation, relative humidity and wind speed. It is particularly useful for accurately representing the climatic conditions faced by outdoor livestock.

Where:

hurs = near-surface relative humidity (%)

 T_{bg} = black globe temperature (°C).


sfcWind = daily mean near-surface wind speed (m/s)

 $tas_c = near$ -surface air temperature in °C

rsds = surface downwelling shortwave radiation (W/m²)

HLI equations

For $T_{bg}>25$ °C:

$$HLI_{T_{bg}>25} = 8.62 + (0.38 \times hurs) + (1.55 \times T_{bg}) - (0.5 \times sfcWind) + [e^{2.4-sfcWind}]$$

For $T_{bg} < 25^{\circ}C$:

$$HLI_{T_{bg} < 25} = 10.66 + (0.28 \times hurs) + (1.3 \times T_{bg}) - sfcWind$$

Where T_{bg} is calculated as:

$$T_{bq} = 1.33 \times tas_c - 2.65 \times tas_c^{0.5} + 3.21 \log(rsds + 1) + 3.5$$

The sigmoid function for Black Globe Temperature (BGT) was determined by:

$$S(BGT) = \frac{1}{(1 + \exp(-\frac{(BGT - 25)}{2.25})}$$

and the final HLI was computed as:

$$HLI = S(BGT) \times HLI_{BG_t > 25} + (1 - S(BGT)) \times HLI_{BG_t < 25}$$

Research objectives

Assessing the evolving global spatiotemporal patterns of heat stress risk in livestock by describing the anomalies of the Temperature-Humidity Index (THI) and Heat Load Index (HLI).

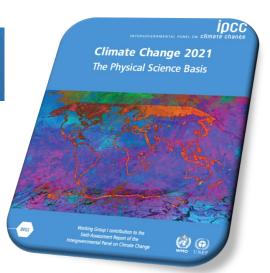
Dataset sources

Data were sourced by:

> NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP) archive

Derived from:

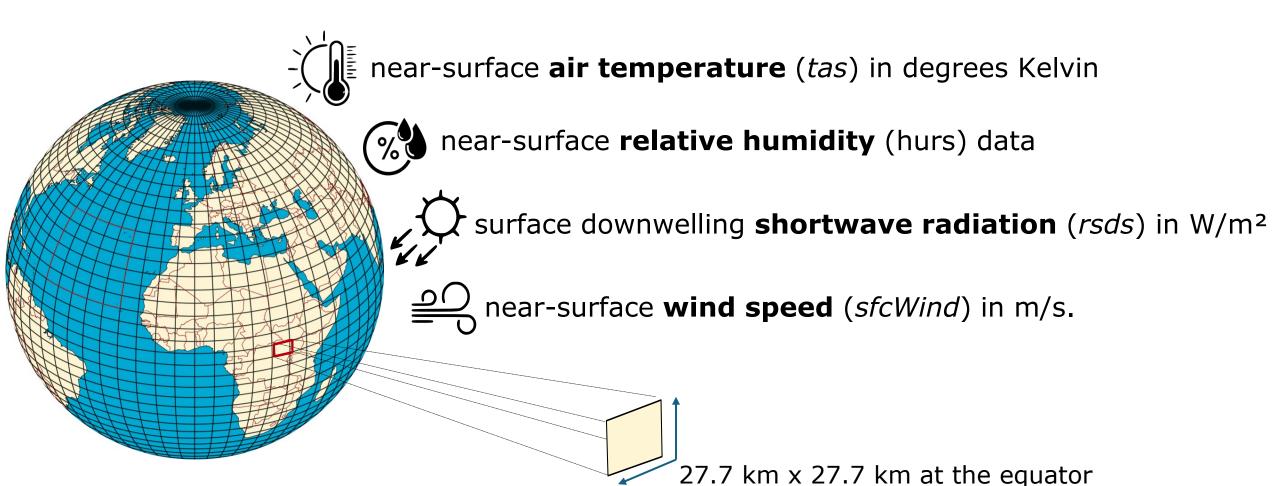
> The latest Climate Model Intercomparison Project (CMIP6)



Employing:

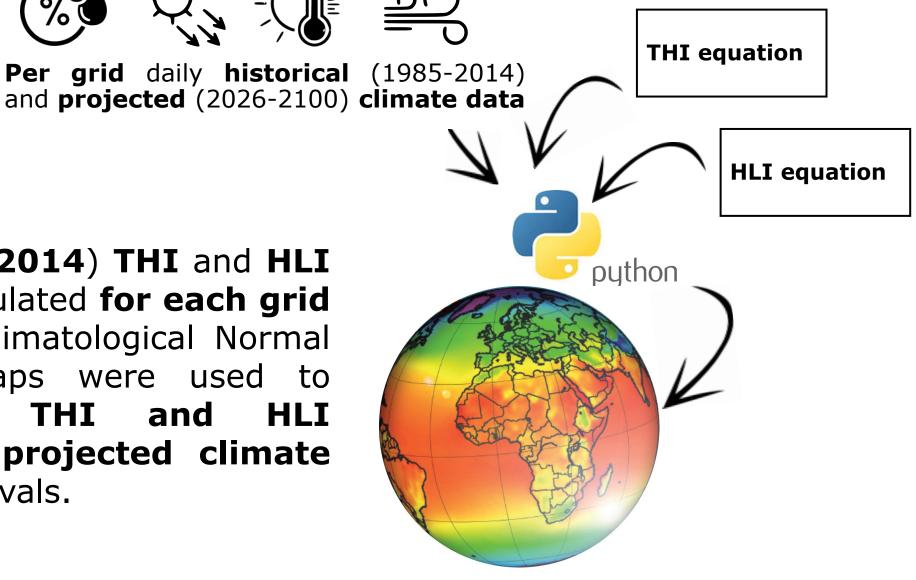
> The latest release of the Community Earth System Model (CESM2) NCAR | COMMUNITY EARTH | CEST | CEST

nex-gddp-cmip6 / NEX-GDDP-CMIP6 / CESM2

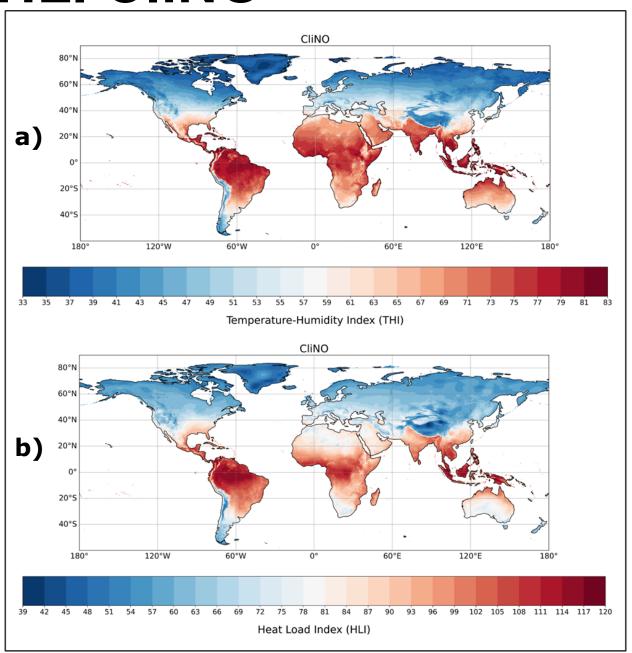

The archive contains downscaled **historical** and **future projections** from **1950** to **2100**

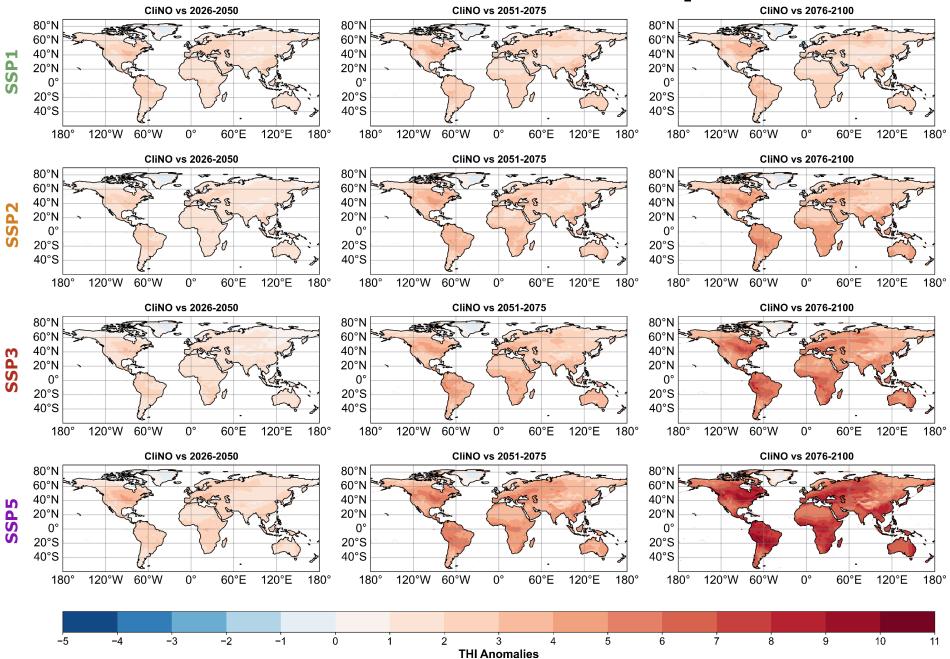
Source: https://nex-gddp-cmip6.s3.us-west-2.amazonaws.com/index.html#NEX-GDDP-CMIP6/CESM2/

Key variables extracted from dataset

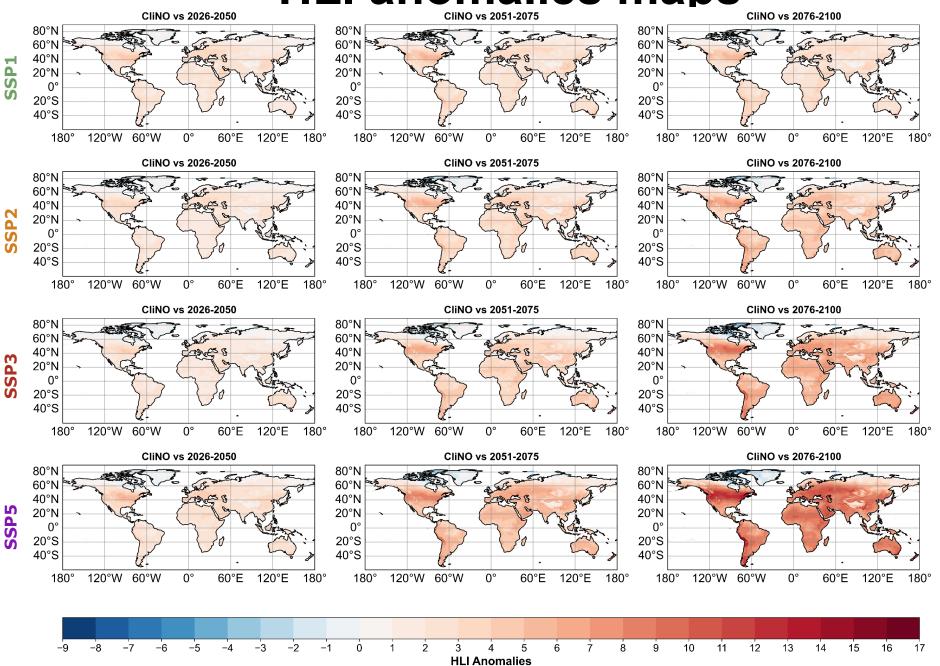

Historical, SSP1, SSP2, SSP3, and SSP5, Daily Mean:

spatial resolution of 0.25° latitude by 0.25° longitude


The 30-year (1985-2014) THI and HLI averages were calculated for each grid to establish the Climatological Normal (CliNO). Thus, maps were used to compare global THI and HLI variations against projected climate data at 25-year intervals.


THI and HLI CliNO

a) Average (1985-2014) annual Temperature-Humidity Index (THI). Areas with higher values, shown in red, indicate zones of substantial thermal stress, while the blue regions represent more temperate conditions.


b) Average (1985-2014) annual Heat Load Index (HLI). In this visualization, red areas signify regions subjected to significant heat stress, whereas cooler zones, depicted in blue, are less impacted by heat.

THI anomalies maps

HLI anomalies maps

Conclusions

- Climate change is expected to increase risk of thermal stress for livestock globally
- Certain regions are likely to experience significantly higher levels of heat stress in the coming decades
- **Urgent adaptation strategies are required** to mitigate the effects of rising temperatures on livestock, especially in regions facing the most severe increases in thermal stress
- The shift of milk production to warmer regions to meet growing populations could worsen the effects of heat stress on the dairy industry

DIPARTIMENTO
DI SCIENZE AGRARIE
E FORESTALI

Thankyow

Giampiero Grossi

Email: g.grossi@unitus.it

