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• Grassland-based agriculture is the main fodder
source for ruminants, crucial for meeting global animal-
based food demand and sustainable food production
(Stumpf et al., 2020).

• Grass-fed products are also commercially valuable
due to higher antioxidants and vitamins (Joubran et al.,
2020; Prache et al., 2020)

• The reduction of grazing activities in Europe is due to
the depopulation of mountain areas, leading to natural
regrowth of tree species in the fields (Pallotta et al.,
2022).

Introduction



• A Decision Support System using Internet of Things technology is
essential for informing farmers about the available biomass, in terms of
both quantity and quality, ensuring optimal pasture management

Introduction



• Existing methods for pasture quality analysis are generally laboratory-based and require labor-intensive preprocessing
steps, which can take several days to complete and are often environmentally harmful due to the use of chemicals and
energy-intensive processes

• Remote sensing encompasses all techniques that collect data from a distance greater than two meters above ground
level, including satellites
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• The main goal of the project is to develop a Decision Support System (DSS) that enables farmers to make short-
term decisions, directing livestock to pasture areas with higher feed quantity and quality
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• The main goal of the project is to develop a Decision Support System (DSS) that enables farmers to make short-
term decisions, directing livestock to pasture areas with higher feed quantity and quality

• By integrating lab data on biomass with satellite imagery, the tool will predict biomass availability

• This DSS could be offered as a mobile application for farmers

• Additionally, combining this information with other data sources (e.g., animal sensors, video) can refine genetic
breeding programs by identifying and characterizing animals that respond differently to environmental challenges
using 'omics' technologies.
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• The model was initially developed for the EU Sebastien Project Service

• The model will be enhanced and applied in the Agritech project, within the FLAGSHIP solution between tasks 5.1.2
and 5.2.3.
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Methods 
Data collection
• Data were collected from June 2023 to May 2024 at three farms in northern Lazio (Italy)

• the pasture samples were analyzed through laboratory analyses

Farm A

Farm B

Farm C

• Farm A: 124 samples
• Farm B: 116 samples

• Farm C: 27 samples

Sampling:

• on three different fields… 
• …with different floreal characteristics;
• in different areas for each farm;
• in different seasons of the year;



Methods 
Data collection
• Laboratory analyses
For each sample:
•   Latitude and Longitude (WGS84)
•   Date (YYYY-MM-DD)
•   Fresh grass (kgDM*ha−1)
•   Dry matter (kg*ha−1) 
•     Ashes (%)
•         Crude Proteins (%)
•         Lipids (%)
•   aNDFom (%)
•   ADF (%)
•   ADL (%)
•   FIBER (%)

 Sample collection

 Laboratory analysis

 Data catalogue

Sampling:

• 9 samples for each farm for each date
• Area of 5 m²
• NDVI for 3 comparable sampling areas



Methods 
Pipeline
• Laboratory analyses

• Computational approach

These information:

•   Latitude and Longitude (WGS84)
•   Date (YYYY-MM-DD)

Where used to retrieve elevation and 
vegetation indices for each sampling 
point

 Sample collection

 Laboratory analysis

 Data catalogue

 Sentinel-2 
 Open Topo Data

Satellite images  Elevation

 Vegetation 
indices



Methods
Our pipeline

• Seasons 
• winter, spring, summer, autumn

• Sentinel-2 spectral bands
• B02, B03, B04, B08, B08, B08A, B12

• Vegetation indices
• NDVI, NDWI, GCI, ARVI

• Elevation data (meters)

Features Targets

•   Fresh grass (kgDM*ha−1)

•   Dry matter (kg*ha−1) 
•     Ashes (%)
•         Raw Proteins (%)
•         Lipids (%)

•   NDF (%)
•   ADF (%)

•   ADL (%)
•   FG (%)

Used to 
predict



Methods
Our pipeline

1

Removal of outlier 
data 

2

Evaluate the 
importance of all 

variables to subset 
the most 

important ones

3

Perform Linear 
Regression 

Analysis

4

Evaluate the 
model 



The importance of the features in the prediction was compared across all targets



Among all variables, the season and elevation proved to be the most important. Season appears in all 
variables, while elevation is important for all variables except dry matter and fresh matter



Among the indices, ARVI and NDVI are present in the models for 6 out of 9 variables.



Among the bands, the most relevant one turned out to be B02 (4 variables)



Results
• The pipeline results show the following R2 and MAE (Mean Absolute Error) values for the target variables. 

In all cases, the real model outperforms a naive random model

Target «real» MAE «naive» MAE R2

 Fresh grass 0.86 1.21 0.32
  Dry matter 0.24 0.33 0.38

 Ashes 2.08 2.58 0.33
Crude Proteins 4.46 6.74 0.51

Lipids 0.40 0.54 0.40
 aNDFom 7.95 10.74 0.44

 ADF 6.25 7.96 0.35
 ADL 2.41 2.81 0.29

 FIBER 5.30 7.07 0.46



Results



Results
Real dry matter  0.36±0.21
Predicted dry matter 0.38±0.23



Results



  Sebastien portal
• dds.sebastien-project.eu

Results

Fresh grass 446.27 ton
Dry matter 46.96 ton

Fresh grass 79.55 ton
Dry matter 6.95 ton

A B



Discussion
• This is the first effort to develop statistical methodologies and

models for the analysis of different soil types from multiple
farms, with annual data collection and a wide variety of crop
types

• Given the integration of different types of data, the accuracy
level (R2) is lower than that reported in the literature (Akari et
al., 2019). However, this study demonstrates that it is
possible to create a generalized system for data analysis,
whose accuracy can improve with the collection of new data
(Ara et al., 2019)

• The model also accounts for the effect of the season, a known
factor in determining pasture characteristics (Ara et al., 2019)



Next steps
• The next steps in the model's development include:

•  collecting a larger number of samples to improve the
model's accuracy

• applying artificial intelligence methods and multitarget
prediction techniques

•  add the prediction of biomass quality parameters to the
application

• Combining this information with other sensors to study the
animals' phenotype, identifying those that consume more or
less pasture and under specific conditions. These studies can
serve as a basis for characterizing the animals through omics
sciences
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Take-home message

An automated model for the analysis of pasture quality and 
quantity data was created, based on remote sensing

The model is based on the analysis of annual field data, integrating 
information from different farms.

The most important features were identified, highlighting the effect 
of the season, the vegetation indices, and the bands



Methods
Filtering data
• Outlier values for biomass quantity and quality, with values three times higher than the standard 

deviation

• Data for which it was not possible to calculate bands and indices with Sentinel-2 due to cloud cover 
(>30%) (Askari et al., 2019)



Methods 
Vegetation indices    

• Vegetation indices delineate subtle changes in spectral signatures caused by variations in plant health and 
density that cannot be distinguished by the human eye



Band Resolution (m(px) Range (nm) Used to

B01 (areosol) 60 443±20 Identify aereosol

B02 (blue) 10 490±60 Soil and vegetation identification

B03 (green) 10 560±35 Water (muddy vs clear), Oil in water and vegetation

B04 (red) 10 665±35 Dead foliage, vegetation type

B05 (red edge) 20 705±15 Classify vegetation

B06 20 740±15 Classify vegetation

B07 20 783±20 Classify vegetation

B08 10 842±115 Classify vegetation

B08A 20 865±20 Classify vegetation

B09 60 945±20 Water vapour

B10 60 1375±30 Cloud Detection

B11 60 1610±90 Moisture content and soil vegetation

B12 20 2190±180 Moisture content and soil vegetation

Methods 
Bands    



Methods 
Vegetation indices    

• Normalized Difference Vegetation Index (NDVI) 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  ⁄(𝐵𝐵𝐵𝐵 − 𝐵𝐵𝐵𝐵) (𝐵𝐵𝐵𝐵 + 𝐵𝐵𝐵𝐵)

• Normalized Difference Water Index (NDWI) 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  ⁄(𝐵𝐵03 − 𝐵𝐵08) (𝐵𝐵03 + 𝐵𝐵08)

• Green Chlorophyll Vegetation Index (GCI) 𝐺𝐺𝐺𝐺𝐺𝐺 =  ⁄(𝐵𝐵08) 𝐵𝐵03  − 1

• Atmospherically Resistant Vegetation Index (ARVI) 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = [𝐵𝐵𝐵𝐵𝐵𝐵−𝐵𝐵𝐵𝐵−0.069 𝐵𝐵𝐵𝐵−𝐵𝐵𝐵𝐵 ]
[𝐵𝐵𝐵𝐵𝐵𝐵+𝐵𝐵𝐵𝐵−0.069 𝐵𝐵𝐵𝐵−𝐵𝐵𝐵𝐵 ]

 

• Green Leaf Index (GLI) 𝐺𝐺𝐺𝐺𝐺𝐺 = [2∗𝐵𝐵𝐵𝐵−𝐵𝐵𝐵𝐵−𝐵𝐵𝐵𝐵]
[2∗𝐵𝐵𝐵𝐵+𝐵𝐵𝐵𝐵+𝐵𝐵𝐵𝐵]

 

• Simple Ratio Red/NIR Ratio Vegetation-Index (RGR) 𝑅𝑅𝑅𝑅𝑅𝑅 =  ⁄𝐵𝐵04 𝐵𝐵03

• Enhanced Vegetation Index (EVI) 𝐸𝐸𝐸𝐸𝐸𝐸 = 2.5 𝐵𝐵08−𝐵𝐵04
𝐵𝐵08+6∗𝐵𝐵04−7.5∗𝐵𝐵02 +1

 

• Structure Insensitive Pigment Index (SIPI) 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  ⁄(𝐵𝐵𝐵𝐵 − 𝐵𝐵𝐵𝐵) (𝐵𝐵𝐵𝐵 − 𝐵𝐵𝐵𝐵)

• Normalized Burn Ratio (NBR) 𝑁𝑁𝑁𝑁𝑁𝑁 =  ⁄(𝐵𝐵𝐵𝐵 − 𝐵𝐵𝐵𝐵) (𝐵𝐵𝐵𝐵 + 𝐵𝐵𝐵𝐵)

• Soil Adjusted Vegetation Index (SAVI) 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝐵𝐵08−𝐵𝐵04 (1+0.725)
(𝐵𝐵08+𝐵𝐵04+0.725)

 



Methods 
Vegetation indices    

Index Sentinel-2 bands Range Function
NDVI B04, B08 [-1, +1] Proxy for greeness, crop growth and vegetation cover (Farias). Negative values correspond to water, values close to 

0 correspond to rocks, snow and sand. Positive values correspond to grassland (0.2-0.4) and forests (close to 1) 
(Sentinel-2)

NDWI B03, B08 [-1, +1] Takes into account water content in vegetation, green healthy 
vegetation has values between 0.02 and 0.6 (Pignarolo)

GCI B03, B04 [-1, +1] Estimation of canopy chlorophyll content (Wu)

ARVI B02, B04, B08 [-1, +1] Used to estimate the Aeresol content. The range for an ARVI is -1 to 1 where green vegetation generally falls 
between values of 0.20 to 0.80. (Sentinel-2). Aimed to reduced the atmospheric effect (Karnieli)

GLI B02, B03, B04 [-1, +1] Used to estimate the Chlorophyll content (Wu)

SAVI B04, B08 [-1, +1] Used to reduce the soil effect (Piragnolo, Karnieli)

SRR/NIR B03, B04 [0, +Inf) Estimates the amount of green vegetation. Values close to infinity indicating a high amount of vegetation.

EVI B04, B08 [-1, +1] Highly sensitive to the dense canopy of dense forests, as well as resistant to
the effects of dark soils, the atmosphere and residual clouds (Villanueva)

SIPI B02, B04, B08 [0, 2] Characterizes the photosynthetic activity and pigment concentration in vegetation. It is less influenced by 
variations in canopy structure, and it provides a more direct measure of vegetation productivity and biomass 

(Vahidi). SIPI values range from 0 to 2, where healthy green vegetation ranges from 0.8 to 1.8 (Sentinel)

NBR B08, B12 [-1, +1] Used to identify burned areas, range between -1 and +1 (Alcaras)



Results

• The NDVI index showed strong correlations with DM in soybeans 
(Rodigheri et al., 2020) and corn (Janousek et al., 2023). 

• The ARVI in demonstrated high correlations with NDVI, suggesting 
their potential as alternatives for biomass-related studies (Aliyu et 
al., 2022)

• Also the NDWI index was previously identified as a good predictor 
for biomass (Serrano et al., 2019)

• The B02 (Blue), B04 (red) and B08 (NIR) bands were also evaluated 
as good predictors for dry pasture biomass (Fernandes et al., 2020)



Results

• The NDVI, EVI, and SIPI indices have previously been identified as 
predictors of nitrogen content in plants (Fernandes et al., 2024; 
Pandey et al., 2022).

• Wavelengths within the B02 (blue) and B05 (Red Edge 1) bands 
have recently been proposed as predictors of nitrogen content in 
pastures and predicting crude proteins (Zhao et al., 2018; Askari et 
al., 2022)

• We also reported the role of Season and Elevation in predicting the 
protein content
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