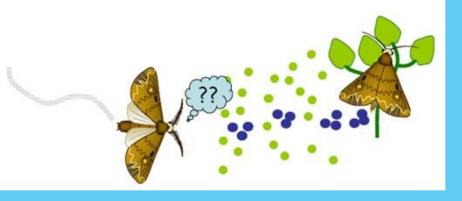


The effect of adults' sex ratio on the reproductive output of *Tenebrio molitor*

Adamaki-Sotiraki C.,1* Zafeiriadis S.,1 Krzyżaniak M.,2 Rumbos I.C.,1 Athanassiou G.C.1

¹ Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Phytokou Str., 38446, Volos, Greece

² Department of Genetics, Plant Breeding and Bioresource Engineering, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-724 Olsztyn, Poland



Manipulating sex ratio of insect populations.

What happens with other insect species?

JOURNAL ARTICLE

Effects of Adult Sex Ratio and Stocking Rate on Viable Egg Production of Anopheles Albimanus (Diptera: Culicidae) Get access >

Donald L. Bailey, Ronald E. Lowe, Joyce E. F. Fowler, Dana A. Focks

Journal of Medical Entomology, Volume 17, Issue 6, 30 December 1980, Pages 563–566, https://doi.org/10.1093/jmedent/17.6.563

Published: 30 December 1980

JOURNAL ARTICLE

Factors Affecting Reproduction of the Tobacco Budworm in the Laboratory Get access >

Antonio A. Guerra, Dan A. Wolfenbarger, R. D. Garcia

Journal of Economic Entomology, Volume 65, Issue 5, 1 October 1972, Pages 1341–1343, https://doi.org/10.1093/jee/65.5.1341

Published: 01 October 1972 Article history ▼

√ The supremacy of females may be beneficial for the optimization of the egg production.

What happens with other insect species?

JOURNAL ARTICLE

Plodia interpunctella: Effect of Sex Ratio on Reproductivity Get access >

John H. Brower

Annals of the Entomological Society of America, Volume 68, Issue 5, 15 September 1975, Pages 847–851, https://doi.org/10.1093/aesa/68.5.847

Published: 15 September 1975 Article history ▼

Effect of sex ratio at three densities on reproduction in laboratory colonies of Delia (= Hylemya) antiqua Meig

A. S. Robinson

First published: January/December 1980 | https://doi.org/10.1111/j.1439-0418.1980.tb03504.x | Citations: 3

√ The male dominance in a population is more preferable.

What happens with *T. molitor*?

JOURNAL ARTICLE

Polyandry in grain beetles, *Tenebrio molitor*, leads to greater reproductive success: material or genetic benefits?

Bradley D. Worden ™, Patricia G. Parker

Behavioral Ecology, Volume 12, Issue 6, November 2001, Pages 761–767, https://doi.org/10.1093/beheco/12.6.761

Published: 01 November 2001 Article history ▼

Females that mated four times to the same male laid more eggs and produced more larvae than females that mated only once.

PMCID: PMC6998128

PMID: 32013878

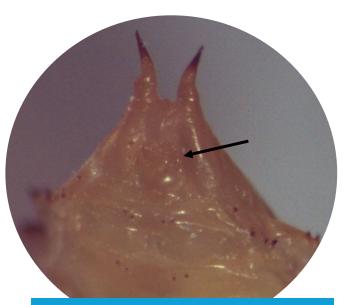
Female biased sex-ratio

→ Females low reproductive effort

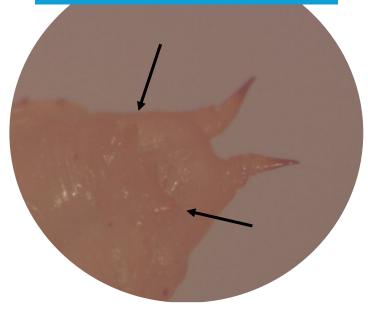
BMC Evol Biol. 2020; 20: 18.

Published online 2020 Feb 3. doi: 10.1186/s12862-020-1586-x

Sex-specific patterns of senescence in artificial insect populations varying in sex-ratio to manipulate reproductive effort


Charly Jehan, Manon Chogne, Thierry Rigaud, and Yannick Moret Moret

Male biased sex-ratio


→ increased the reproductive effort of females

Male & Female pupae seperation



Pupal abdominal appendages

Labelling of female adults

Flour for oviposition

Every week

After 14d

Egg production

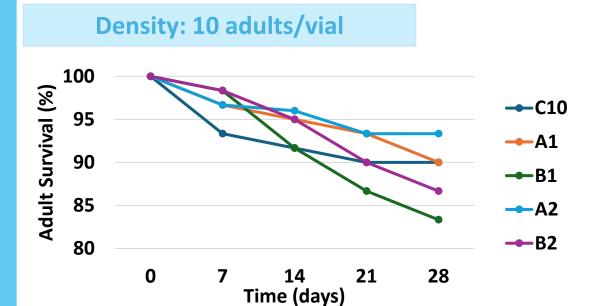
Hatched larvae

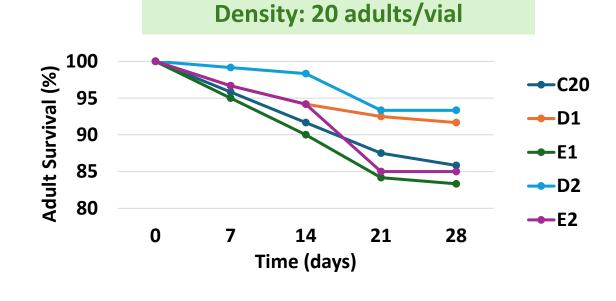
√ 3 different sex ratios
(50%, 60%, 80%)

✓ 3 different densities
(10, 20, 30 adults/vial)

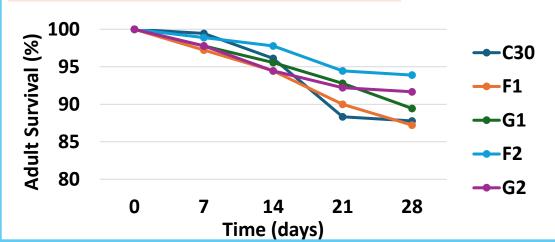
Density: 10 adults/vial

Density	Sex ratio	Female:Male
C10	50%	5:5
A1	60%	4:6
B1		6:4
A2	80%	2:8
B2		8:2

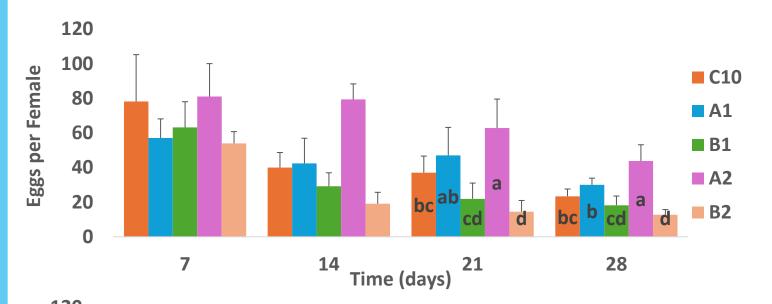

Density: 20 adults/vial

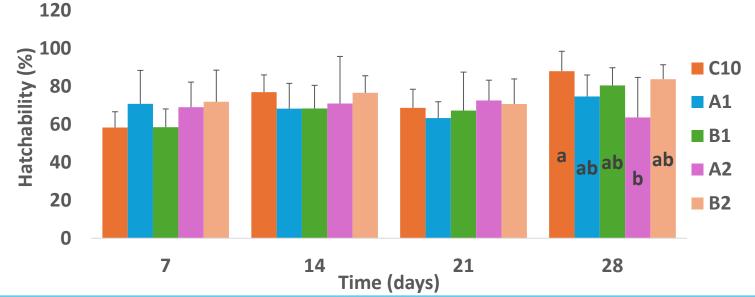

Density	Sex ratio	Female:Male
C20	50%	10:10
D1	60%	8:12
E1		12:8
D2	80%	4:16
E2		16:4

Density: 30 adults/vial


Density	Sex ratio	Female:Male
C30	50%	15:15
F1	60%	12:18
G1		18:12
F2	80%	6:24
G2		24:6

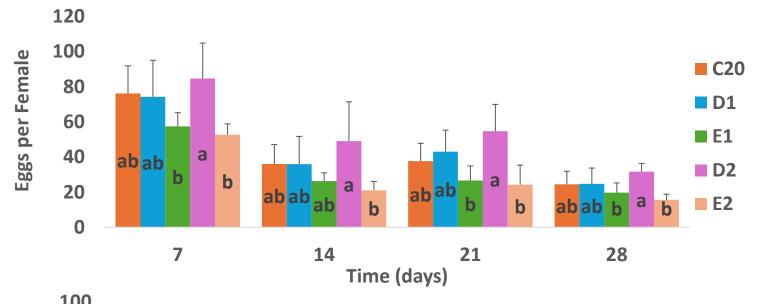
Results



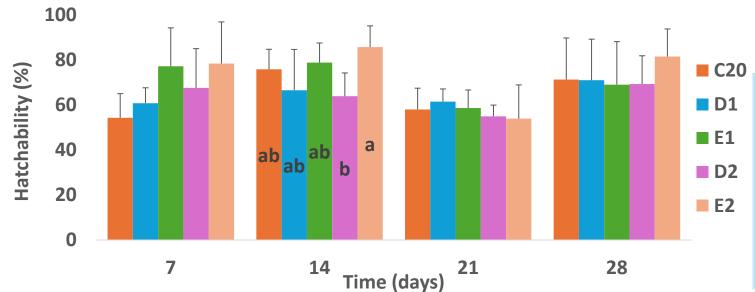


- Overall survival >80-85%
- No statistical differences

Results - Density: 10 adults/vial

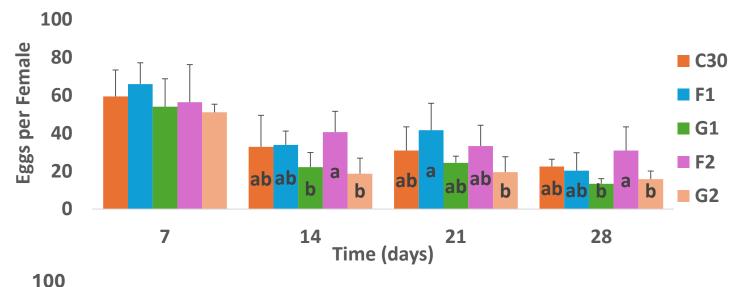


Density	Sex ratio	Female:Male
C10	50/50	5:5
A1	60/40	4:6
B1		6:4
A2	80/20	2:8
B2		8:2

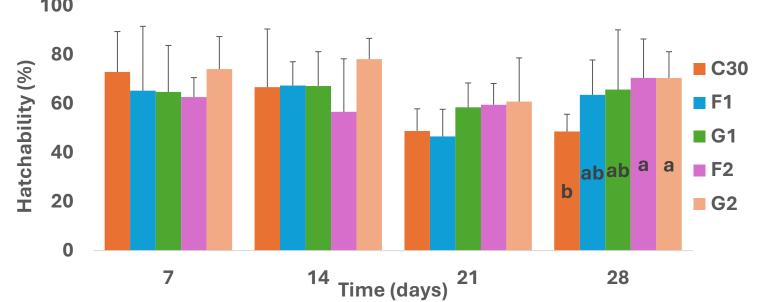


- 2:8 females:males more eggs after 21 d
- Differences in hatchability at 28 d

Results - Density: 20 adults/vial



Density	Sex ratio	Female:Male
C20	50/50	10:10
D1	60/40	8:12
E1		12:8
D2	80/20	4:16
E2		16:4



- 4:16 females:males more eggs
- Differences in hatchability at 14 d

Results - Density: 30 adults/vial

Density	Sex ratio	Female:Male
C30	50/50	15:15
F1	60/40	12:18
G1		18:12
F2	80/20	6:24
G2		24:6

- **6:24 females:males** more eggs (14d & 28 d)
- Differences in hatchability at 28 d

Conclusions & Discussion

- ✓ Survival was not affected by different reproductive efforts
- ✓ Egg oviposition
 Differences were more apparent
 For all densities 20% females oviposited more eggs

✓ Hatchability:

Differences at the end of the bioassay for 10 & 30 adults/vial Differences at 14 days for 20 adults/vial



Thank You!

Contact info

e-mail: cadamaki-s@uth.gr

