

75th EAAP ANNUAL MEETING – FLORENCE 2024 THE ROLE OF COLOUR INDEXES FOR THE ASSESSMENT OF SPECIES-SPECIFIC DIFFERENCES IN QUALITY TRAITS OF MILK FROM DOMESTIC RUMINANTS

Meet the research team

A quick glance at some of the people involved in this research line

Javier Caballero-Villalobos
UNIVERSIDAD DE CÓRDOBA

Ana Garzón
UNIVERSIDAD DE
CÓRDOBA

José Perea
UNIVERSIDAD DE
CÓRDOBA

Elena Angón UNIVERSIDAD DE CÓRDOBA

Miguel Cantarero
UNIVERSIDAD DE
CÓRDOBA

Eoin Ryan
UNIVERSITY COLLEGE
DUBLIN

Orla Keane TEAGASC GRANGE

Ramón Arias CERSYRA A

INTRODUCTION

Technological aptitude of milk

The cheese sector demands the development of rapid and low-cost methods to determine milk efficiency.

GAPS OF KNOWLEDGE
TECHNOLOGICAL
PERFORMANCE OF MILK

INDUSTRY CHALLENGES

ECONOMIC
VALUE OF MILK

RESEARCH OPPORTUNITIES

RAPID AND INEXPENSIVE
ANALYTIC METHODS

Colour in the food industry

Colour has been traditionally used to characterize the composition and quality of food products.

The colour of milk can vary greatly and depends to a large extent on its physical structure, the fat content and the pigmentation due to the presence of carotenoids and riboflavins.

- Variation of colloidal particles.
- Effect of nutrition in grazing herds.
- Herd health and management practices.

OUR PROPOSED LINE OF RESEARCH

- To explore if colour can be adopted as a tool to <u>predict</u> <u>technological quality</u> of ruminant milk intended for cheesemaking.
- To assess if colour can be <u>used as a discriminator</u>, not only at a species level, but also at a breed level.


Background investigation

What have we achieved so far with this research line?

Using multivariate analysis to explore the relationships between color, composition, hygienic quality, and coagulation of milk from Manchega sheep

A. Figueroa, ¹ D. Caballero-Villalobos, ¹* D. E. Angón, ¹ R. Arias, ² A. Garzón, ¹ A. Garzón, ¹ A. M. Perea ¹ Departamento de Producción Animal, Universidad de Córdoba, Córdoba 14071, Spain ² Centro Regional de Selección y Reproducción Animal de Castilla—La Mancha, Valdepeñas, Ciudad Real 13300, Spain

VERY GOOD PREDICTOR FOR COAGULATION

NON-COAGULATING MILK → FALSE NEGATIVES (23-33%)

Sample collection

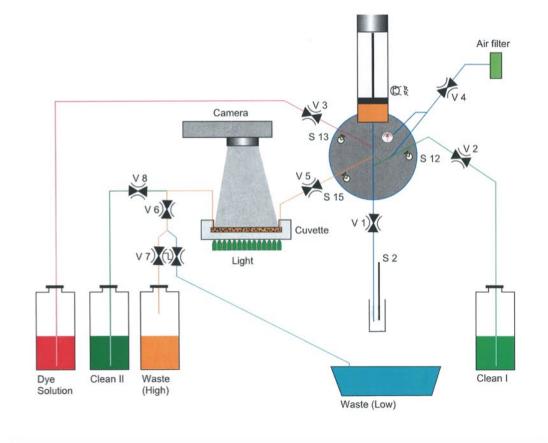
Milk samples (n = 2400) were collected from dairy farms located in Spain and Ireland in the last 10 years.

Milk composition and SCC

Milk composition was performed by direct measurement of the percentage of its major components using a Milkoscan™ FT-120, and Somatic Cell Count was measured with a Fossomatic™ Minor Cell Counter.

MILKOSCANTM FT-120

FAT

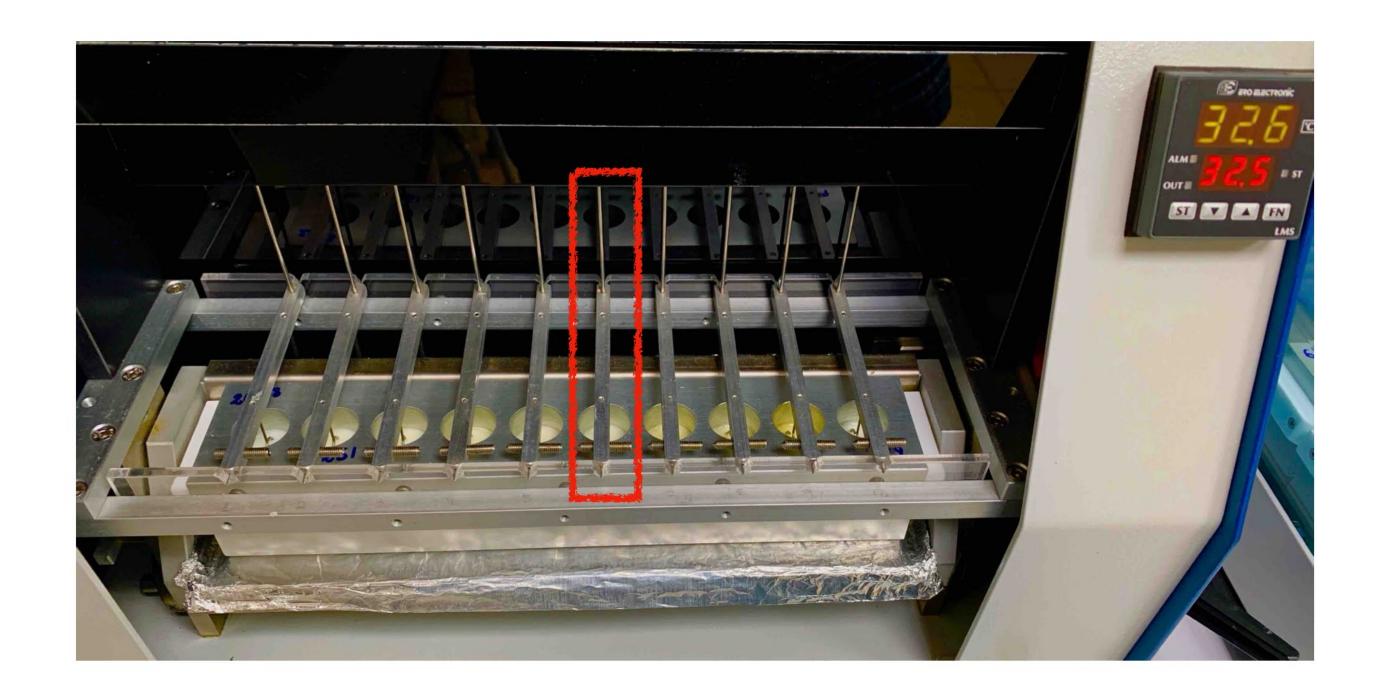

PROTEIN

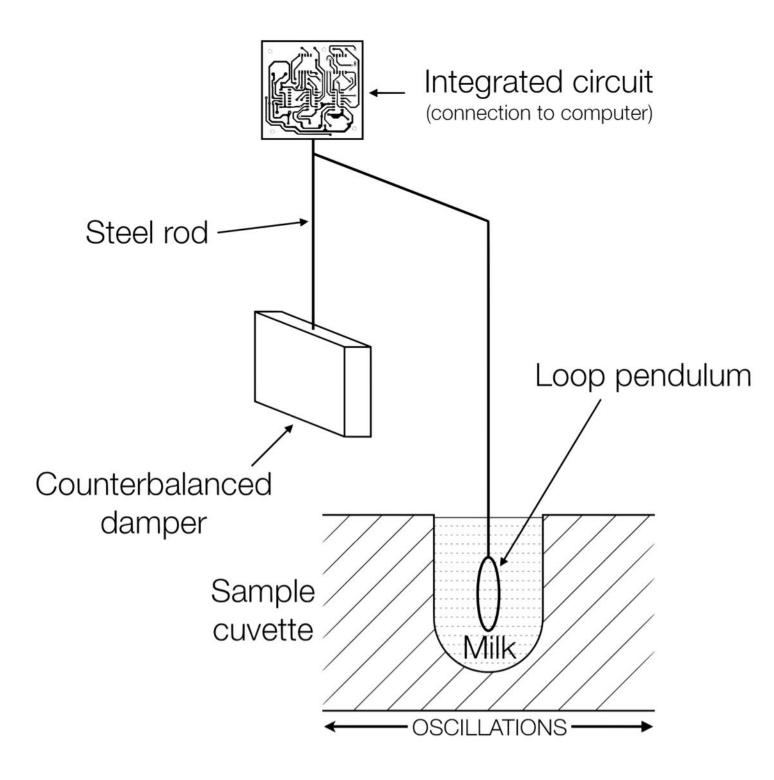
LACTOSE

TOTAL SOLIDS

FOSSOMATICTM MINOR CELL COUNTER

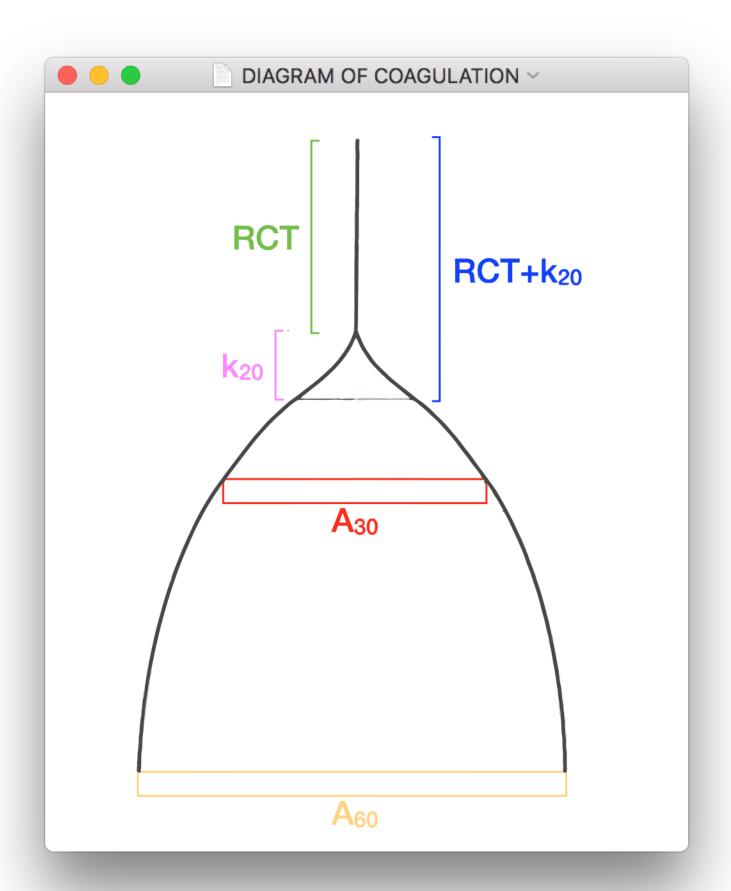
SCC normalized to SOMATIC CELL SCORE





Rennet coagulation

Renneting parameters were monitored using a FormagraphTM viscometer, based on the oscillatory motion of circular pendula immersed in milk during coagulation.

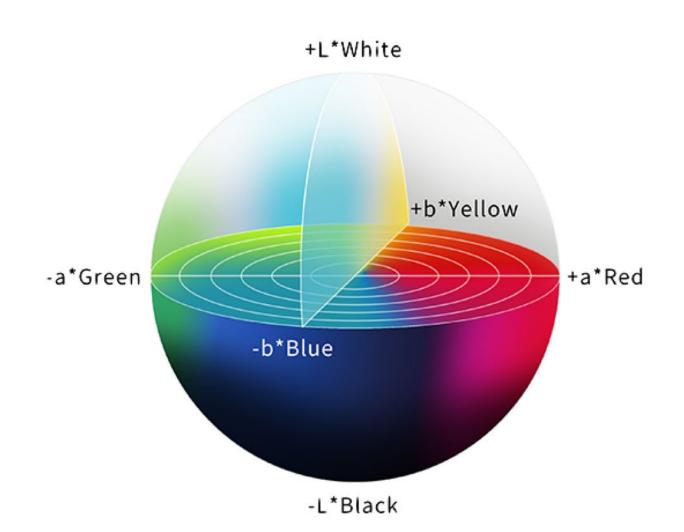


Rennet coagulation

Renneting parameters were monitored using a FormagraphTM viscometer, based on the oscillatory motion of circular pendula immersed in milk during coagulation.

- •RCT: time elapsed (in minutes) until the formation of the curd.
- **k**₂₀: time (in minutes) from the start of gel development until a width of 20 mm is reached on the chart.
- A₃₀: width of the diagram (mm) at 30 minutes.
- A60: width of the diagram (mm) at 60 minutes.

CURD YIELD 30 min 2800×g, 37 °C DRY CURD YIELD 100 °C, 24 h



Colour in raw milk

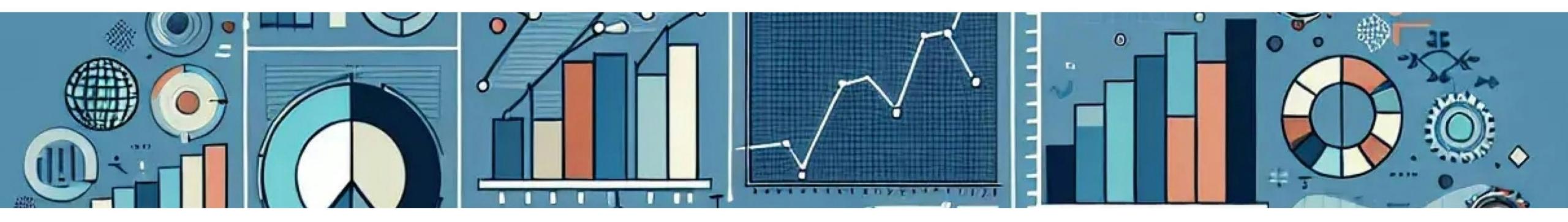
For the measurement of colour values in milk we used a colour meter, which provided the values for brightness (L*) and chromaticity (a* and b*).

- Brightness values (L*) range from 0 (white) to 100 (black).
- **Cromaticity values** range from -60 to +60. Positive values for **a*** are associated to red and negative values to green. Positive values for **b*** are associated to yellow and negative values to blue. **C*** (chroma) and **h*** (hue) were then obtained using mathematical formulas (Daszkiewicz et al., 2012).

Statistical analysis

Multivariate analysis techniques were used to analyze differences and similarities in colour, milk composition, and milk coagulation.

CANONICAL DISCRIMINANT ANALYSIS


THE MOST DISCRIMINANT VARIABLES OBTAINED WERE IDENTIFIED

STEPWISE DISCRIMINANT ANALYSIS

PERFORMED ON 4 SETS OF VARIABLES: COMPOSITION VARIABLES; COAGULATION VARIABLES; COLOR VARIABLES; AND THE WHOLE SET OF VARIABLES.

DISCRIMINANT ANALYSIS

THE PREDICTIVE ABILITY OF EACH MODEL IS TESTED USING THE ABSOLUTE ASSIGNMENT OF SAMPLES TO THE PREASSIGNED GROUP

Canonical discriminant analysis

The table emphasises the variables selected that showed higher discriminatory ability among species

Variable	Cow	Goat	Sheep	Wilks' λ	F-Value	p-Value	\mathbb{R}^2	CAN1*	CAN2*
FAT	2.44 ± 1.12 °	5.56 ± 1.23 b	6.54 ± 1.81 a	0.429	1518.51	<0.001	0.867	0.835	0.072
CP	4.18 ± 0.47 b	3.98 ± 0.54 c	5.59 ± 0.79 a	0.474	1264.47	<0.001	0.775	0.632	0.603
LAC	4.62 ± 0.26 c	4.86 ± 0.45 b	4.95 ± 0.36 a	0.850	201.44	< 0.001	0.283	0.427	0.052
pН	$6.70\pm0.08~\mathrm{a}$	6.66 ± 0.13 b	6.61 ± 0.14 c	0.898	130.12	< 0.001	0.423	-0.343	-0.111
RCT	20.48 ± 6.00	20.07 ± 7.38	19.88 ± 10.03	0.999	1.07	0.343	0.473	-0.034	-0.005
\mathbf{k}_{20}	9.39 ± 6.01 a	6.06 ± 3.95 b	3.53 ± 3.09 c	0.730	420.56	< 0.001	0.518	-0.562	-0.145
A_{60}	30.94 ± 9.44	25.09 ± 9.65 c	38.69 ± 10.99 a	0.817	255.28	< 0.001	0.384	0.280	0.464
CY	16.64 ± 3.72 c	20.59 ± 4.78 b	26.76 ± 5.77 a	0.558	903.79	<0.001	0.879	0.695	0.295
DCY	35.02 ± 4.09	42.17 ± 6.08 a	42.37 ± 5.43 a	0.694	502.89	< 0.001	0.536	0.611	-0.059
L*	78.27 ± 2.87 c	83.47 ± 1.28 b	83.61 ± 2.21 a	0.483	1221.35	<0.001	0.736	0.794	-0.077
a*	-4.13 ± 1.34	-1.12 ± 0.51 a	-2.46 ± 0.71 b	0.483	1217.35	<0.001	0.707	0.679	-0.505
b*	2.52 ± 3.17 °	3.29 ± 1.22 b	4.49 ± 1.93 a	0.870	169.63	< 0.001	0.572	0.377	0.159

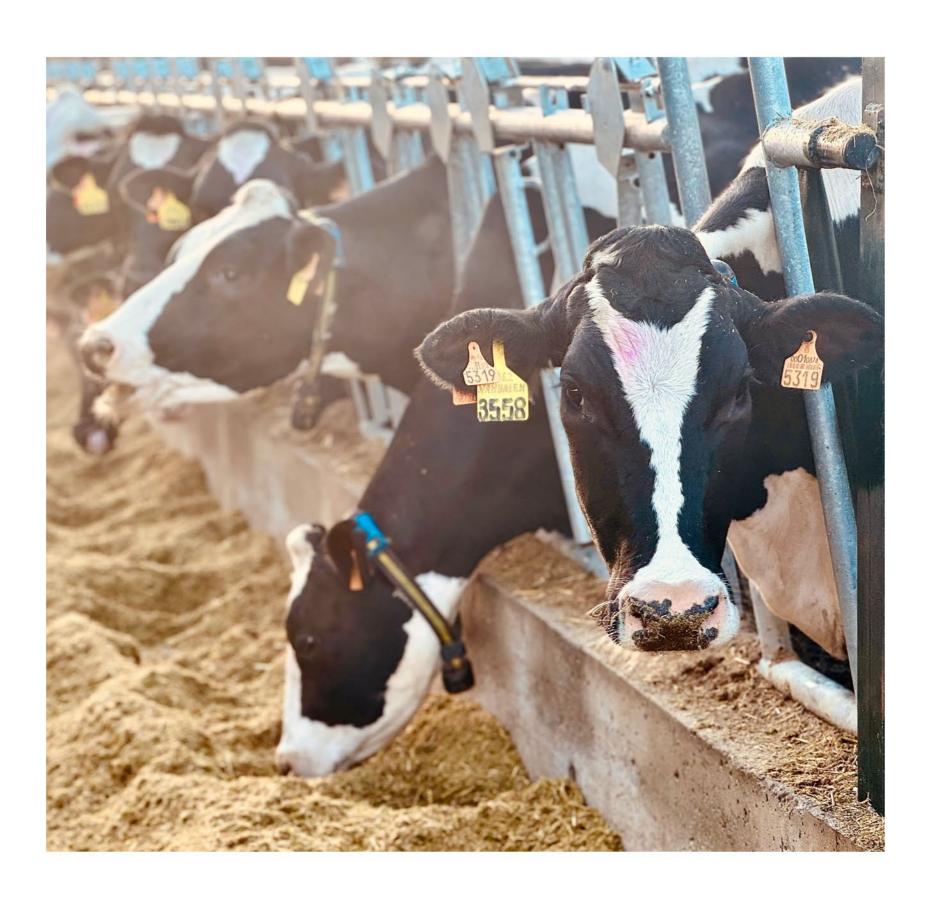
^{*} Correlation of each variable with the canonical function

Canonical discriminant analysis

The table emphasises the variables selected that showed higher discriminatory ability among species

Variable	Cow	Goat	Sheep	Wilks' λ	F-Value	p-Value	\mathbb{R}^2	CAN1*	CAN2*
Composition									
FAT	2.44 ± 1.12 °	5.56 ± 1.23 b	6.54 ± 1.81 a	0.429	1518.51	<0.001	0.491	0.855	-0.266
CP	4.18± 0.47 b	3.98 ± 0.54 c	5.59 ± 0.79 a	0.474	1264.47	<0.001	0.482	0.770	0.512
LAC	4.62 ± 0.26 c	4.86 ± 0.45 b	$4.95\pm0.36~^{\mathrm{a}}$	0.850	201.44	< 0.001	0.021	0.441	-0.116
pН	6.70 ± 0.08 a	6.66 ± 0.13 b	6.61 ± 0.14 c	0.898	130.12	< 0.001	0.077	-0.370	0.004
Coagulati	on								
RCT	20.48 ± 6.00	20.07 ± 7.38	19.88 ± 10.03	0.999	1.07	0.343	0.286	-0.038	0.004
\mathbf{k}_{20}	9.39 ± 6.01 a	6.06 ± 3.95 b	3.53 ± 3.09 c	0.730	420.56	< 0.001	0.467	-0.647	-0.048
A_{60}	30.94 ± 9.44	25.09 ± 9.65 c	38.69 ± 10.99 a	0.817	255.28	< 0.001	0.223	0.385	0.797
CY	16.64 ± 3.72 c	20.59 ± 4.78 b	26.76 ± 5.77 a	0.558	903.79	<0.001	0.307	0.819	0.289
DCY	35.02 ± 4.09	42.17 ± 6.08 a	42.37 ± 5.43 a	0.694	502.89	< 0.001	0.132	0.668	-0.374
Colour	Colour								
L*	78.27 ± 2.87 c	$83.47 \pm 1.28 \text{ b}$	83.61 ± 2.21 a	0.483	1221.35	<0.001	0.605	0.821	0.564
a*	-4.13 ± 1.34	-1.12 ± 0.51 a	-2.46 ± 0.71 b	0.483	1217.35	<0.001	0.597	0.903	-0.047
b*	2.52 ± 3.17 °	3.29 ± 1.22 b	4.49 ± 1.93 a	0.870	169.63	< 0.001	0.409	0.300	0.504

* Correlation of each variable with the canonical function

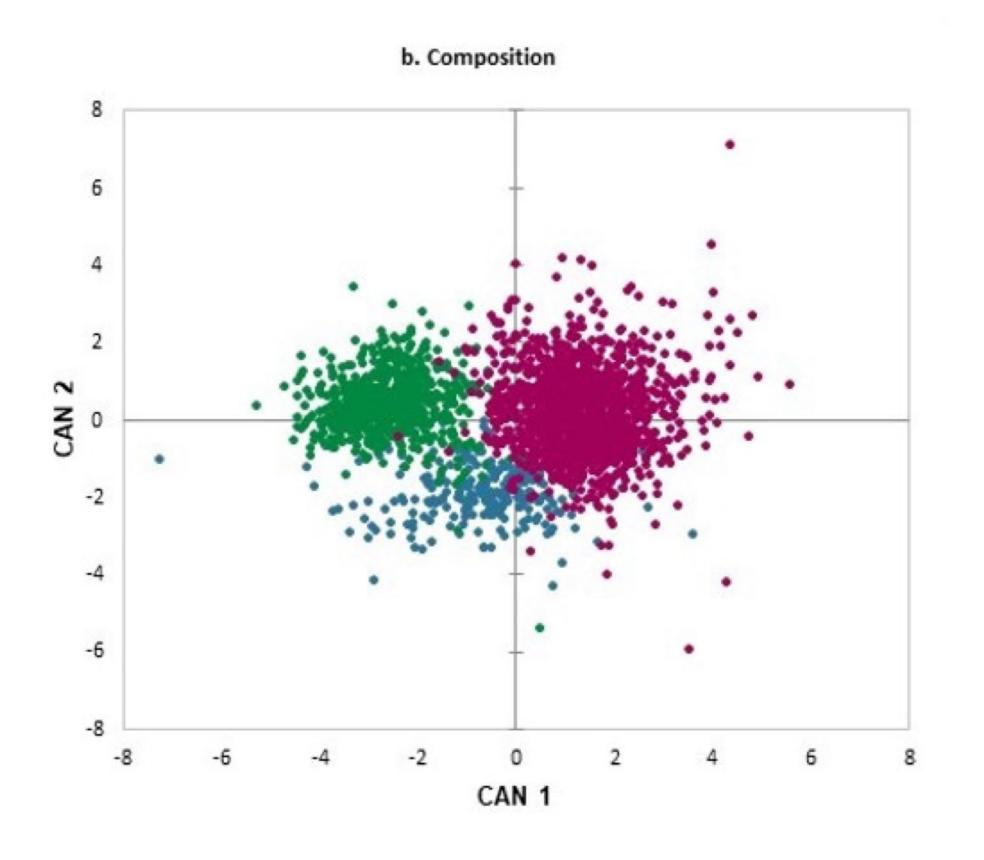


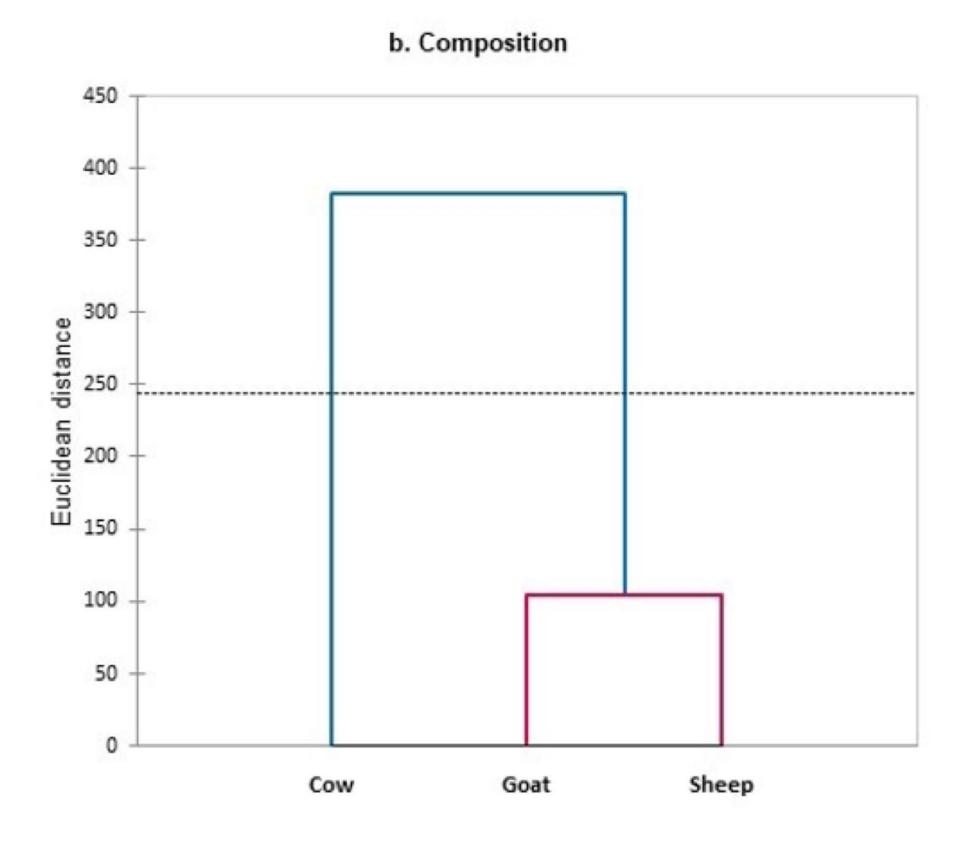
Stepwise discriminant analysis

Discriminant canonical models for composition, coagulation, colour, and the whole set of variables.

Model	No. Variables in model	Wilks' λ	F-Value	p-Value
Whole set	12	0.083	468.30	< 0.001
Composition	4	0.172	802.49	<0.001
Coagulation	5	0.308	364.78	< 0.001
Colour	3	0.261	725.89	<0.001

In all cases, the extracted canonical functions significantly discriminated among the three species. The F-statistics revealed a higher discriminating ability for the variables related to milk composition and colour.

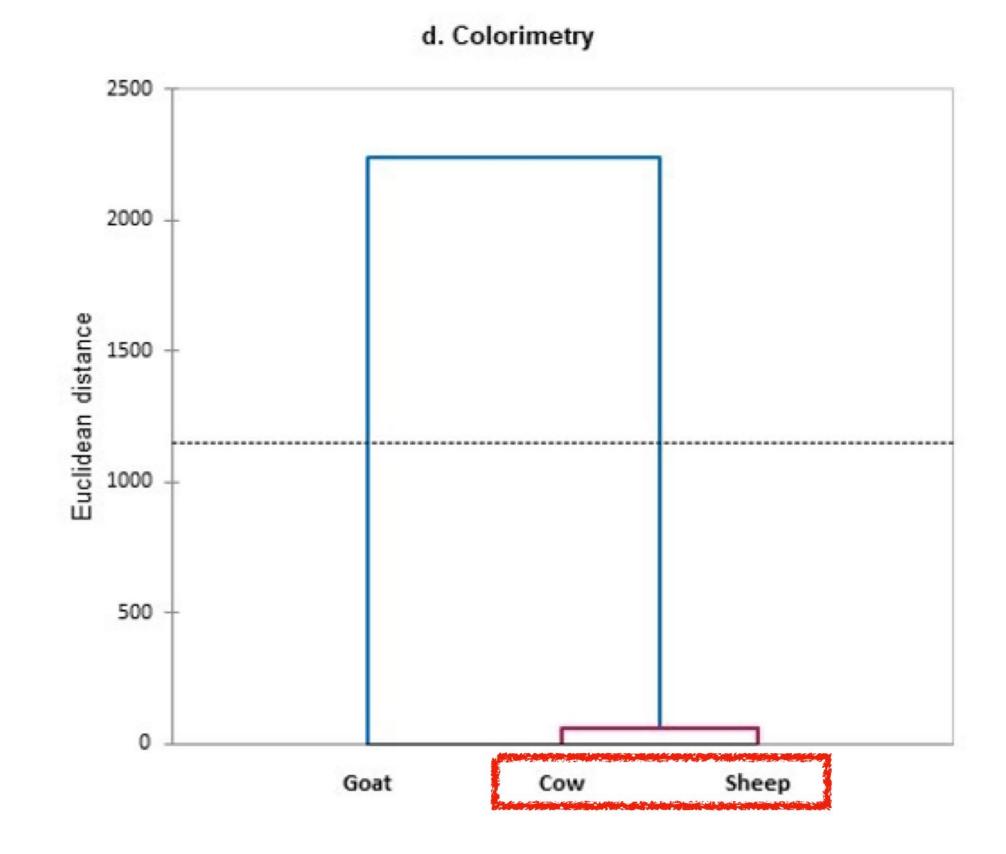




Canonical discriminant analysis (composition)

Graphical representation of the results obtained by canonical discriminant analysis for milk composition variables, defined by the axes of the first 2 canonical variables.





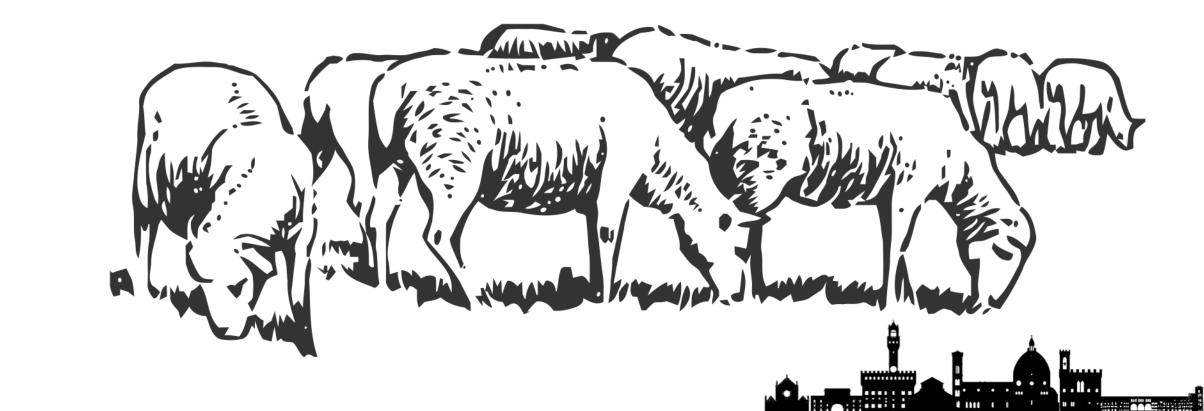
Canonical discriminant analysis (colour)

Graphical representation of the results obtained by canonical discriminant analysis for the colour variables, defined by the axes of the first 2 canonical variables.

Discriminant analysis

Assignation percentages in the predefined groups and classification errors.

Model	Goat	Cow	Sheep	
All variables				
Goat	94.72	1.51	3.77	
Cow	0.15	98.66	1.19	97.8%
Sheep	1.49	0.59	97.92	01.070
Error level	0.08	0.02	0.01	
Composition				
Goat	87.92	3.02	9.06	
Cow	3.86	94.95	1.19	91.9%
Sheep	8.25	0.59	91.16	011070
Error level	0.37	0.02	0.01	
Coagulation				
Goat	76.98	6.04	16.98	
Cow	10.57	86.90	2.53	82.2%
Sheep	17.25	1.78	80.97	
Error level	0.60	0.06	0.05	
Colour	a ponte a figuraçõe dos co ntra aceda Ponte e A de Ponte a mais ase a la Fina de Ponte e A figurações do com em O	i para di dika taraha kung ika di merupika tak arasama minara di dika taraha kung ika di dimerupika tak arasam Tarah	linda alkintin etra atti no ni più kalta prave i lime aliano di tronscribi più mestra atti no ni più kalta di	ra variationi valituotikuutua mana minika kantuuria variationi valituotikuutua mana minika kantuuria variati
Goat	96.23	0.38	3.40	
Cow	0.00	85.88	14.12	88.8%
Sheep	3.64	7.50	88.86	
Error level	0.16	0.15	0.08	



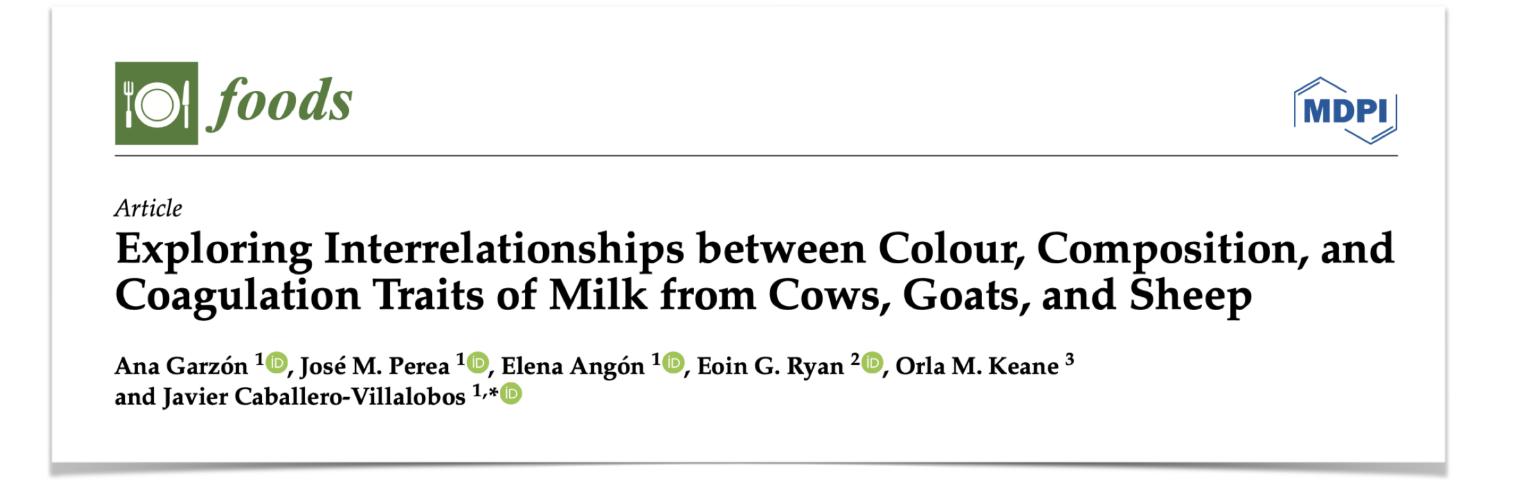
Canonical correlation analysis

Correlation coefficients between variables and canonical variables included in the canonical correlation analysis.

	CANONICAL COMPONENT							
Variable	COW		GO	AT	SHEEP			
	$\mathbf{F_1}$	$\mathbf{F_2}$	$\mathbf{F_1}$	$\mathbf{F_2}$	$\mathbf{F_1}$	$\mathbf{F_2}$		
Composition—coagulation models								
pН	-0.324	0.823	-0.150	-0.104	0.217	0.890		
FAT	-0.829	-0.359	0.809	0.569	-0.954	-0.127		
CP	-0.800	-0.112	0.825	-0.519	-0.864	0.184		
LAC	-0.119	-0.455	-0.076	-0.126	-0.087	-0.301		
RCT	-0.449	0.661	-0.078	-0.322	-0.117	0.898		
\mathbf{k}_{20}	0.151	0.702	-0.397	0.409	0.499	0.478		
A_{60}	-0.633	0.251	0.234	-0.563	-0.627	0.161		
CY	-0.952	-0.157	0.968	0.010	-0.948	0.103		
DCY	-0.561	-0.231	0.130	-0.346	-0.555	-0.446		
Composition	on—colorii	metric mod	lels					
pН	-0.091	0.677	-0.199	0.272	-0.099	-0.774		
FAT	-0.865	0.260	0.943	0.257	0.899	0.165		
CP	-0.796	-0.154	0.618	-0.755	0.823	-0.228		
LAC	-0.337	-0.671	-0.360	-0.239	-0.793	0.350		
L*	-0.920	-0.166	0.653	-0.136	0.472	0.840		
a*	-0.055	0.869	0.746	0.516	0.748	0.371		
b*	-0.791	0.490	0.985	-0.040	0.951	-0.186		

	CANONICAL COMPONENT								
Variable	COW		GOAT		SHEEP				
	$\mathbf{F_1}$	$\mathbf{F_2}$	$\mathbf{F_1}$	$\mathbf{F_2}$	\mathbf{F}_1	$\mathbf{F_2}$			
Coagulatio	Coagulation—colorimetric models								
RCT	-0.255	0.630	0.028	-0.820	0.191	-0.630			
\mathbf{k}_{20}	0.227	0.735	0.041	-0.693	-0.119	-0.712			
A_{60}	-0.493	-0.426	0.138	0.793	0.324	-0.401			
CY	-0.966	0.096	-0.852	0.153	0.840	-0.080			
DCY	0.314	-0.501	-0.361	0.026	0.265	0.271			
L *	-0.889	-0.104	-0.673	0.590	0.526	0.836			
a*	-0.187	0.982	-0.821	-0.120	0.735	0.272			
b*	-0.851	0.150	-0.983	0.185	0.953	-0.212			

Improvements & further actions


This field of research should be continued considering several aspects.

LIMITATIONS OF THE STUDY

SCC

SIMPLE MODELS

OTHER MILK COMPOUNDS

FURTHER ACTIONS

- 1 Application of the developed methodology on milk from individual animals from different breeds.
- Development and assessment of more complex models that include other variables in order to finetune the predictive ability of colour values in milk processing into cheese.
- Exploration of colour measurements as a potential tool to assess the presence of bacteria in milk.

CONCLUSIONS

Conclusions and proposed actions

- Colour can be used to effectively discriminate milk at a species level. It can also help predict if milk will coagulate under laboratory conditions.
- While milk quality traits show some common patterns of variations, strong species-specific relationships emerge, highlighting the connection between milk colour and curd yield.
- These findings may allow to model these relationships to estimate milk technological performance, potentially leading to an optimization of the coagulation process beneficial for the cheesemaking industry.



AGRICULTURE AND FOOD DEVELOPMENT AUTHORITY

THANKYOU

Y REPRODUCCIÓN ANIMAL DE CASTILLA-LA MANCHA