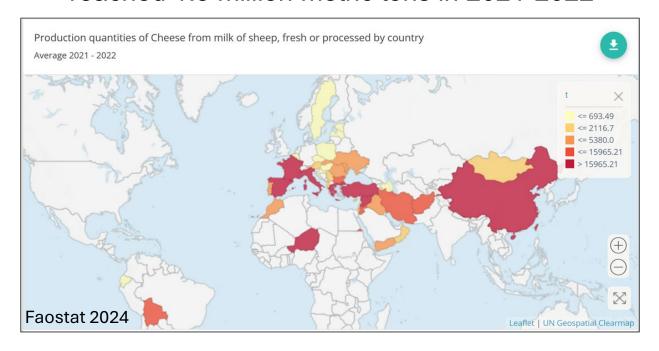


Assessment of mineral composition in sheep milk: which effects should we include?


Johanna Ramírez-Díaz¹, Giorgia Stocco², Claudio Cipolat-Gotet², M. Ablondi², A. Summer², Alessio Negro³, Alessandro Lotto⁴, Simone Blotta⁴, Francesco Tiezzi⁵, Stefano Biffani¹

¹National Research Council, Institute of Agricultural Biology and Biotechnology, Milano, Italy, ²University of Parma, Dep. of Veterinary Science, Parma, Italy, ³Associazione Nazionale della Pastorizia (Asso.Na.Pa.), Ufficio Studi, Roma, Italy, ⁴Nutristar spa, Reggio Emilia, Italy, ⁵Department of Agriculture, Food, Environment and Forestry, Università degli Studi di Firenze, Firenze, Italy

INTRODUCTION

Cheese Industry

 The global dairy sheep cheese production reached 1.5 million metric tons in 2021-2022

The sheep cheeses production in Italy in 2022 was approximately 37 tonnes

Rural context and development

The sheep production systems:

- •Importance in the rural context: Challenges to produce other species
- Nutritional composition and taste of dairy products
- Higher quality composition

INTRODUCTION

Average values of sheep milk composition:

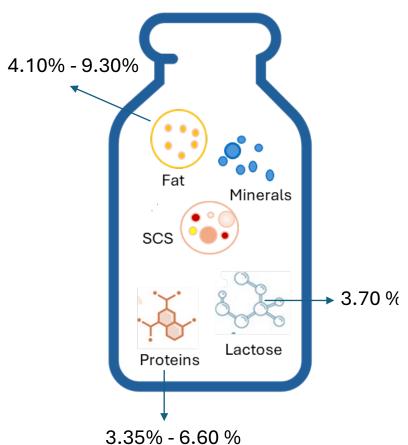
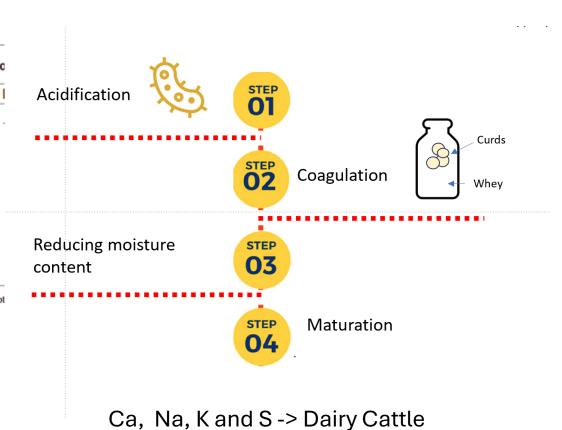



Table 5-Concentration of minerals in milk from vario

	Cattle ^e	Sheep ^g				
(mg/100 g)						
Čalcium"	122	195 to 200				
Phosphorus	119	124 to 158				
Potassium	152	136 to 140				
Magnesium	12	18 to 21				
Sodium	58	44 to 58				
$(\mu q/100 q)$						
Zinc	530	520 to 747				
Iron	80	72 to 122				
Copper	60	40 to 68				
Manganese	20	5.3 to 9				
lodine	2.1	10.4				
Selenium	0.96	3.1				

^aSchryver and others (1986); ^bMehaia and others (1995); ^cSalimei and ot Haj and Al Kanhal (2010).

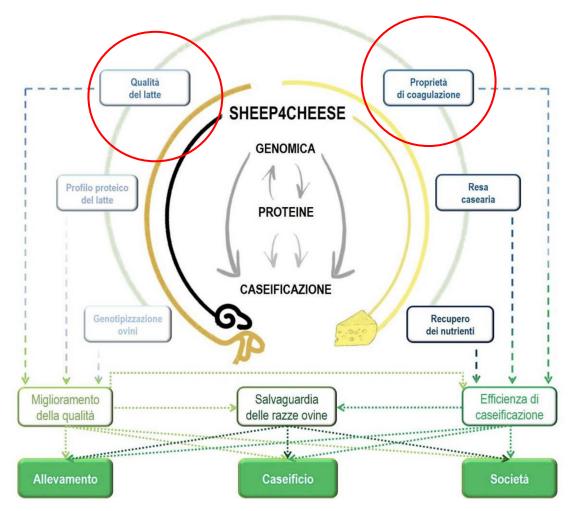
Barłowska et al., 2011

INTRODUCTION

Giovanni Bittante

Limited and almost non-existent in local breeds -> Cheese production -> environmental adaptation, traditions and cultural heritage

Taylor & Francis NEW ZEALAND JOURNAL OF AGRICULTURAL RESEARCH Estimation of genetic parameters for cheesehttps://doi.org/10.1080/00288233.2024.2368505 OPEN ACCESS Check for update making traits in Spanish Churra sheep RESEARCH ARTICLE Estimation of genetic parameters for production, R. Pelayo ¹, B. Gutiérrez-Gil ¹, A. Garzón ², C. Esteban-Blanco ¹, H. Marina ¹, J.J. Arranz ¹ $\stackrel{\circ}{\sim}$ $\stackrel{\boxtimes}{\boxtimes}$ composition and processability of milk from dairy sheep in a **New Zealand flock** Show more V Ana Carolina Marshall (10 a,b), Nicolas Lor **55** Cite Mike Weeks^d and Warren McNabb^b 710. Heritability and genomic analysis of coagulation event in sheep Get rights and content 7 milk ^aDepartment of Animal Science, School of Agricultu open archive New Zealand; bThe Riddet Institute, Massey Unive G. Gaspa (1), A. Cesarani (1), F. Correddu (1), M. Congiu (1), C. Dimauro (1), A. Pauciullo (1), N.P.P. Scientific and Industrial Research Organisation (C Macciotta (i) Foods & Bioproducts Group, AgResearch Ltd, Mas Pages: 2928 - 2931 OPEN Iournal of Dc Available onlin https://doi.org/10.3920/978-90-8686-940-4 710 61. PMCID: PMC8453569 In Press, Journal Pre-pro .12552 PMID: 34014003 Published Online: February 09, 2023 Detailed mineral profile lerlying milk production traits in Valle del Belice Full-text cheese from cows, buffa bility mapping and dromedary camels, and efficiency of Anna Maria Sutera, ^{III} Marco Tolone, ² Salvatore Mastrangelo, ² Rosalia Di Gerlando, ² Maria Teresa Sardina, ² Baldassare Portolano, ² Ricardo Pong-Wong, ³ and Valentina Riggio ^{3,4} recovery of minerals in their cheese ► Author information ► Article notes ► Copyright and License information PMC Disclaimer Nicolò Amalfitano ¹ A M, Nageshvar Patel ¹, Mohamed-Laid Haddi ², Hamida Benabid ³, Michele Pazzola ⁴, Giuseppe Massimo Vacca ⁴, Franco Tagliapietra ¹, Stefano Schiavon ¹


SHEEP4CHEESE

Aim:

Improving the milk quality and efficiency of cheese-making process

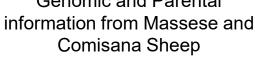
To improve the quality of the sheep milk through genetic selection of the animals

SHEEP4CHEESE

PRIORITIES

- 1. Fostering knowledge transfer and innovation
- 2. Enhancing competitiveness
- 3. Promoting food chain organization and risk management
- 4. Restoring, preserving and enhancing ecosystems
- 5. Promoting resource efficiency
- 6. Promoting social inclusion, poverty reduction and economic development

SHEEP4CHEESE



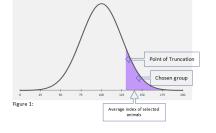
✓ To evaluate the genetic variability and effects that influence the milk and mineral composition:

Genotyping

Genomic and Parental

Phenotyping

Evaluations of Mineral contents and milk composition



Evaluation of coagulation and cheese making process

analyses Single, multitrait models and pleiotropic effects

5. Genome wide association

4. GEBVs and EBVs estimation

Selection to economical important traits and genetic gain prediction

3. Genetic parameters Single and multitrait models

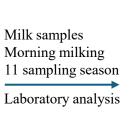
2. Statistical modelling

Focus on define the fixed and Random

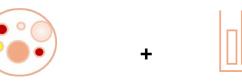
effects

1. Data analysis

MATERIAL



Italian Apenines


Central and Southern Italy

%Fat, %Protein, %Caseina, %Lactose MilkoScan FT3 infrared analyser

Somatic Cell Score Fossomatic DC7 somatic cell counter

рΗ Crison Basic 25 portable pH meter

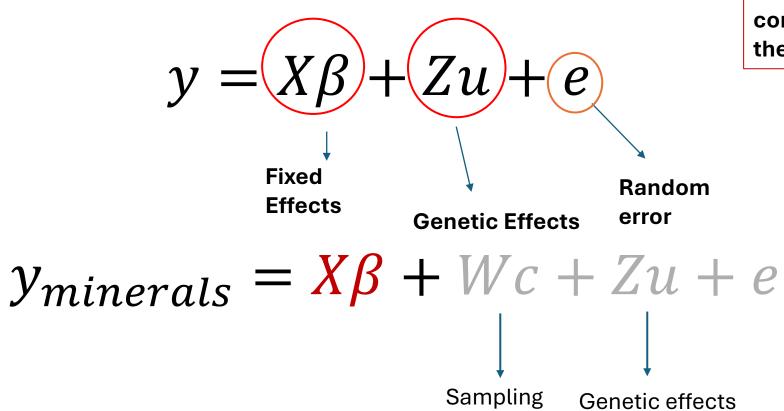
Ca, P, Na, K, Mg, S, Cl Wavelength Dispersive X-ray fluorescence

To explain this:

Inclusion of environmental factors: animal status, sampling and other traits

Inclusion of genetic information

Pedigree:

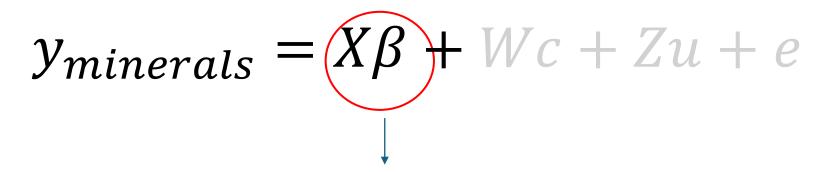

Comisana: 742,851 animals

(sires: 15033 and 172,481 dams)

Massese: 132,685

(sires: 3014 and 45626 dams).

METHODS


The question was: can the composition of milk affect the mineral content of milk?

METHODS

Which effects keep on the final model?

Stepwise regression: to identify the subset of variable that produces the best model performance for each trait

Parity Order:

1;2;3;4; > 5

DIM:

Class 1: 8 -30d,

Class 2: 31 -50d;

Class 3: 51-70d ;

Class 4: 71-90d;

Class 5: 91-110d;

Class 6: 111 -130d;

Class 7: 131-148d

Milk Yield

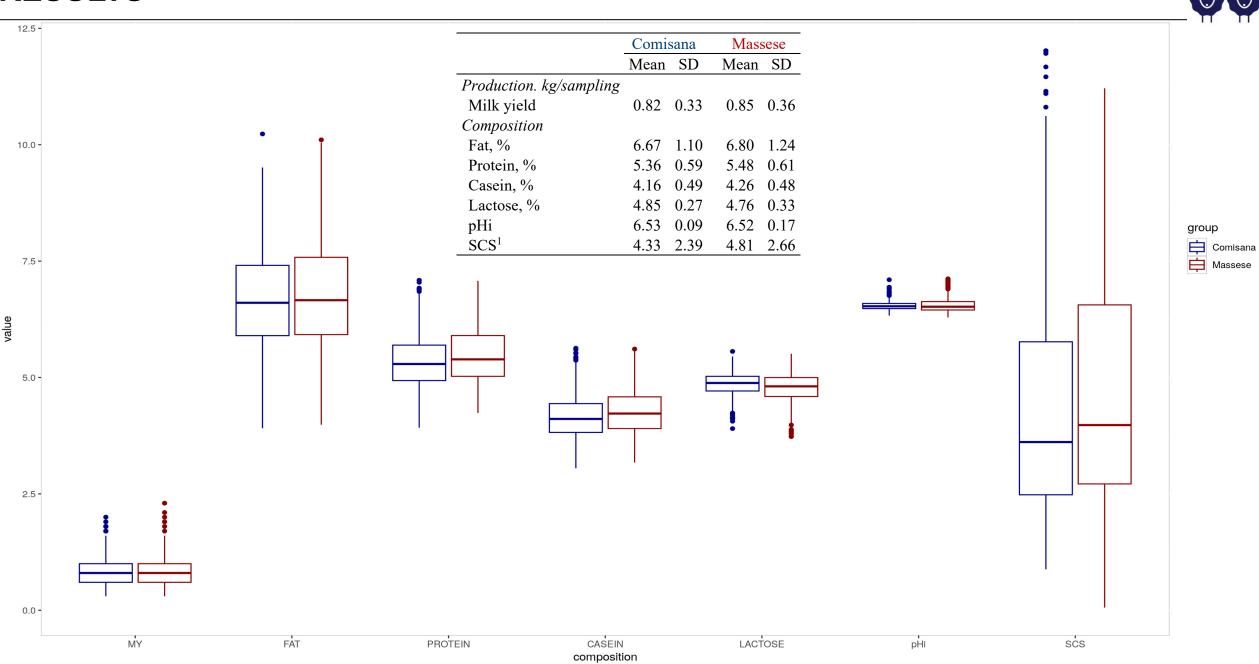
class 1: 0.3 – 0.55 kg;

class 2: 0.6 - 0.79 kg;

class 3: 0.8 - 0.97 kg;

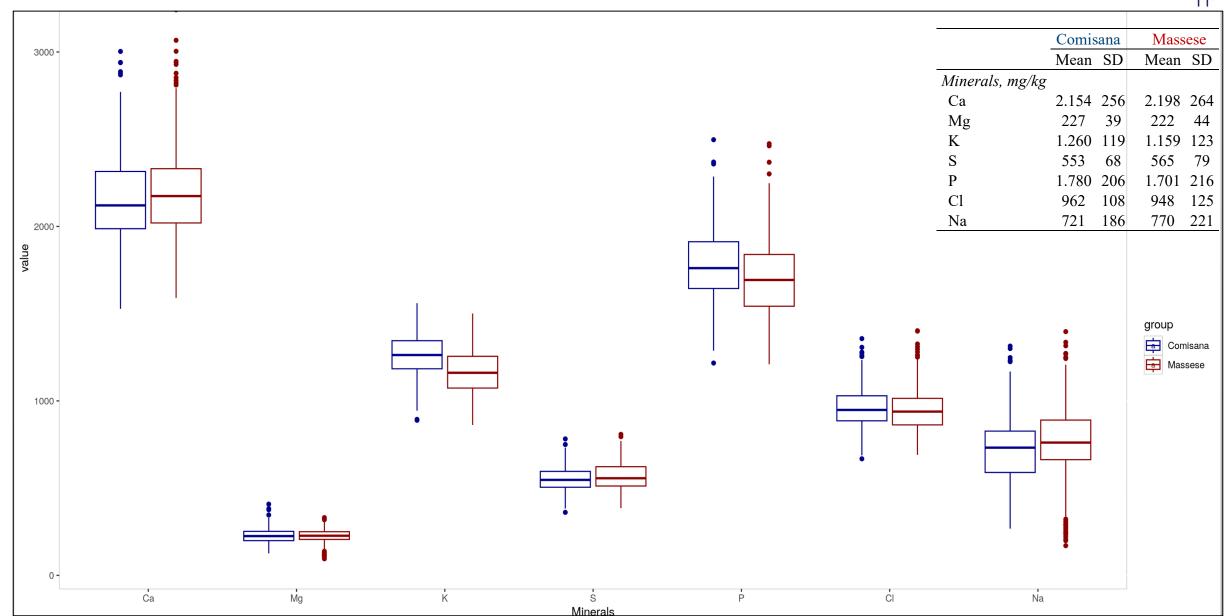
class 4: 1 - 2.33 kg

Fat %


Casein %

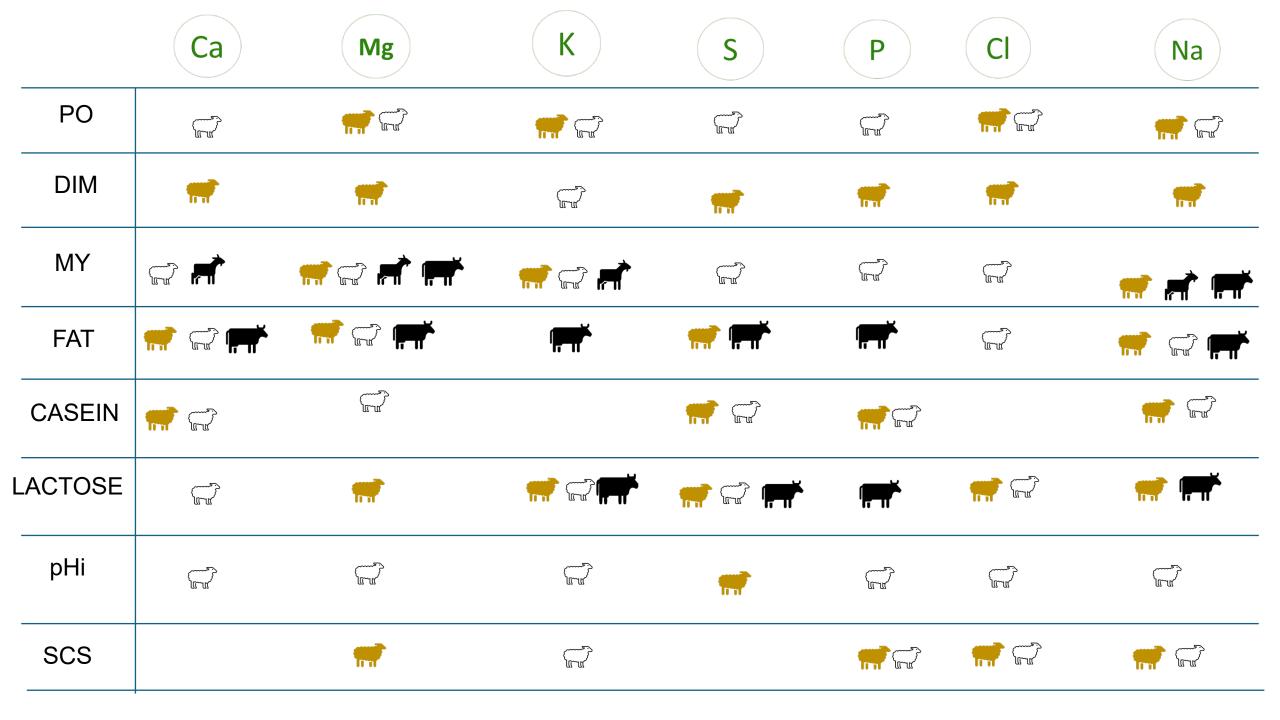
Lactose %

рΗ


SCS

RESULTS

RESULTS


RESULTS

	Со	Ma	Co	Ma	Со	Ма	Co	Ма	Со	Ма	Co	Ма	Co	Ма
	Ca		Р		Mg		S		Na		K		CI	
Systematic effects														
Parity Order		*		*	*	*		*	*		*	*	*	*
DIM	*		*		*		*		*			*	*	
MY		*	*	*		*		*	*	*	*	*		*
Fat	*	*			*	*	*		*	*				*
Casein	*		*	*		*	*	*	*	*				
Lactose		*			*		*	*	*		*	*	*	*
рН		*		*		*	*	*		*		*		*
SCS ¹			*	*	*				*	*		*	*	*
Random Effects														
Direct additive genetic effects	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Sampling	*	*	*	*	*	*		*	*	*		*	*	*
Residual	*	*	*	*	*	*	*	*	*	*	*	*	*	*

Co: Comisana Ma: Massese *p > 0.05

The specific significant effects on individual minerals were not exactly the same!!!

CONCLUSIONS

- ➤ The differences across breeds highlight the need for breed-specific investigations to characterize the complex relationships between milk composition and mineral content. The synthesis of minerals in milk depends on several factors, including diet and nutrition, stress and illness, hormonal levels, as well as genetic factors that can determine the absorption, transport, and metabolism of these minerals.
- ➤ In addition to the "typical" effects, evaluating the percentages of protein, casein, fat, pH, and SCS could provide a more comprehensive understanding of the factors influencing the mineral composition of sheep's milk.

CONCLUSIONS

This study provides new insights on the milk composition of the Comissana and Massese sheep breeds but is necessary to increase the number of records to characterize the variability of the mineral content indifferent sheep breeds and environments.

Thank you for your attention