Why should we care about the rumen microbiome in next animal breeding strategies

Óscar González-Recio

C.N. Marcos, J. López-Paredes, M. Martínez-Álvaro

METHANE & GENETICS

BUROPA TO TO THE TOTAL TOT

Livestock Science 263 (2022) 105023

Contents lists available at ScienceDirec

Livestock Science

Chack for spidates

Rumen eukaryotes are the main phenotypic risk factors for larger methane emissions in dairy cattle.

A. Saborío-Montero ^{a,b}, M. Gutiérrez-Rivas ^b, I. Goiri ^c, R. Atxaerandio ^c, A. García-Rodriguez ^c, Javier López-Paredes ^d, J.A. Jiménez-Montero ^d, O. González-Recio ^{b,e,e}

* Escuela de Zootecnia y Centro de Investigación en Nutrición Animal, Universidad de Costa Rica, 11501, San José, Costa Rica

b Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, 28040 Madril, 5

* Department of Animal Production, NEIKER. Basque Institute for Agricultural Research and Development. Basque Research and Technology Alliance (BRTA). Cas Aeronalismentric de Advante s. nr. 01192

^d Spanish Holstein Association (CONAFE). Ctra. De Andalucía km 23600 Valdemoro, 28340 Madrid, Spain

* Departamento de Producción Agraria, Escuela Tècnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Ciudo

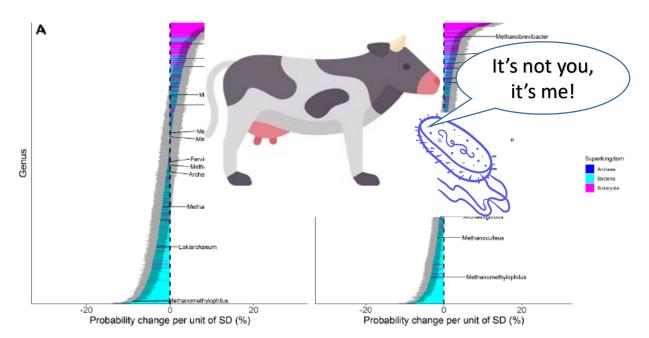


Fig. 3. Change in the probability of being classified in the upper quartile for (A) methane concentration (ppm CH₄) and (B) methane intensity (ppm CH₄/kg milk) per unit of standard deviation for relative abundance (%) of 1240 genera colored by superkingdom. Black dashed line indicates the baseline probability of being classified in the upper quartiles without any genus effect. All the archaea genera are explicitly indicated. Probability intervals based on posterior standard deviations are depicted in gray for all genera.

Wallace et al. BMC Genomics (2015) 16:839 DOI 10.1186/s12864-015-2032-0

RESEARCH ARTICLE

Open Access

The rumen microbial metagenome associated with high methane production in cattle

R. John Wallace^{1*}, John A. Rooke², Nest McKain¹, Carol-Anne Duthie², Jimmy J. Hyslop², David W. Ross², Anthony Waterhouse², Mick Watson^{3†} and Rainer Roehe^{2†}

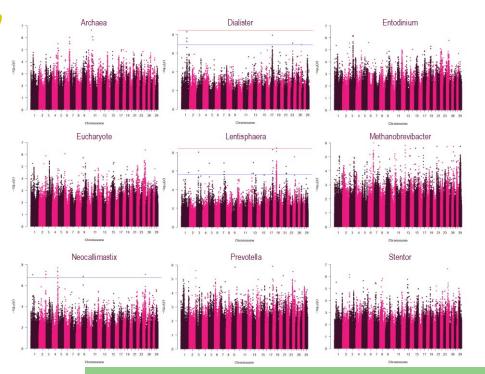
Identification of Complex Rumen Microbiome Interaction Within Diverse Functional Niches as Mechanisms Affecting the Variation of Methane Emissions in Bovine

Marina Martinez-Álvaro^{1,2*1}, Marc D. Auffret^{1,*1}, Robert D. Stewart³, Richard J. Dewhurst¹, Carol-Anne Duthie¹, John A. Rooke¹, R. John Wallace⁴, Barbara Shih⁵, Tom C. Freeman⁵, Mick Watson^{3,5} and Rainer Roehe^{1,*}

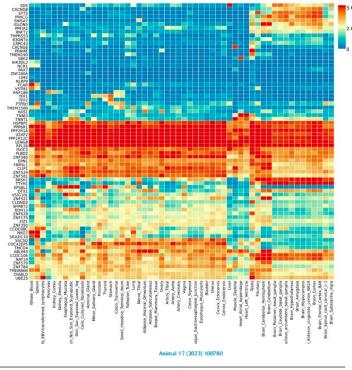
MINIREVIE

June 15, 2008 Volume 74 Issue 12 https://doi.org/10.1128/AEM.02812-07

Structure of the Archaeal Community of the Rumen


Peter H. Janssen*, Marek Kirs†

Grasslands Research Centre, AgResearch Ltd., Palmerston North 4442, New Zealand


Genome-wide association analyses

GENES ASSOCIATED TO MICROBIOME COMPOSITION

- Expressed in brain (hypothalamus, basal ganglia, amigdala, hypocampus)
 - Satiety, appetite, intake levels
- Expressed in salivary glands
 - Rumen buffer

Contents lists available at Science Direct

Animal The international journal of animal biosciences

Review: Diving into the cow hologenome to reduce methane emissions and increase sustainability

Oscar Gonzalez-Recio ^{a,*}, Natalia Scrobota ^{a,b}, Javier López-Paredes ^c, Alejandro Saborío-Montero ^{d,e}, Almudena Fernández ^a, Evangelina López de Maturana ^{b,g}, Beatriz Villanueva ^a, Idoia Goiri ^h, Raquel Atxaerandio ^h, Aser García-Rodríguez ^h

scientific reports

OPEN

Rumen and lower gut microbiomes relationship with feed efficiency and production traits throughout the lactation of Holstein dairy cows

Hugo F. Monteiro¹, Ziyao Zhou², Marilia S. Gomes³, Phillip M. G. Peixoto⁴, Erika C. R. Bonsaqlia¹, Igor F. Canisso³, Bart C. Weimer¹ & Fabio S. Lima¹²³

Proc. Assoc. Advmt. Breed. Genet. 21: 89-92

PREDICTION OF RESIDUAL FEED INTAKE FROM GENOME AND METAGENOME PROFILES IN FIRST LACTATION HOLSTEIN-FRIESIAN DAIRY CATTLE

M. Wang¹, J. E. Pryce^{1,2}, Keith Savin¹ and B. J. Hayes^{1,2}

¹Biosciences Research Division, Department of Economic Development, Agribio, 5 Ring Road, Bundoora, VIC 3086, Australia ²La Trobe University, Bundoora, VIC 3086, Australia

OPEN

Received: 4 June 2018 Accepted: 26 November 2018 Published online: 09 January 2019

Whole rumen metagenome sequencing allows classifying and predicting feed efficiency and intake levels in cattle

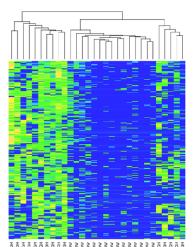
Beatriz Delgado 1, Alex Bach 2, Isabel Guasch 4, Carmen González, Guillermo Elcoso, Jennie E. Pryce & Oscar Gonzalez-Recio 1,5

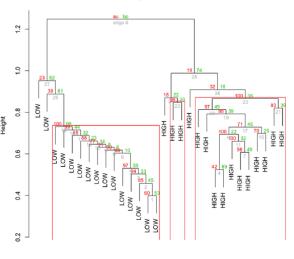
J. Dairy Sci. 107:5881–5896 https://doi.org/10.3168/jds.2024-24014

© 2024, The Authors. Published by Elsevier Inc. on behalf of the American Dairy Science Association[®]. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

The oral microbiome as a proxy for feed intake in dairy cattle

C. N. Marcos, ^{1,2}* • A. Bach, ³† • M. Gutiérrez-Rivas, ^{2,4} • and O. González-Recio² • 1Departamento de Producción Agraria, ETSIAAB, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid, Spain ²Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria – CSIC, 28040 Madrid, Spain ³ICREA, 08007 Barcelona, Spain


⁴Blanca from the Pyrenees, Hostalets de Tost, 25795 Lleida, Spain



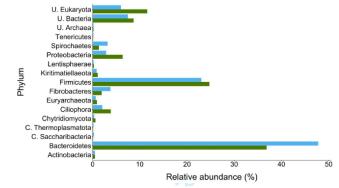
b) Hierarchical clustering

Cluster dendrogram with AU/BP values (%)

Distance: correlation Cluster method: average

SCIENTIFIC REPORTS

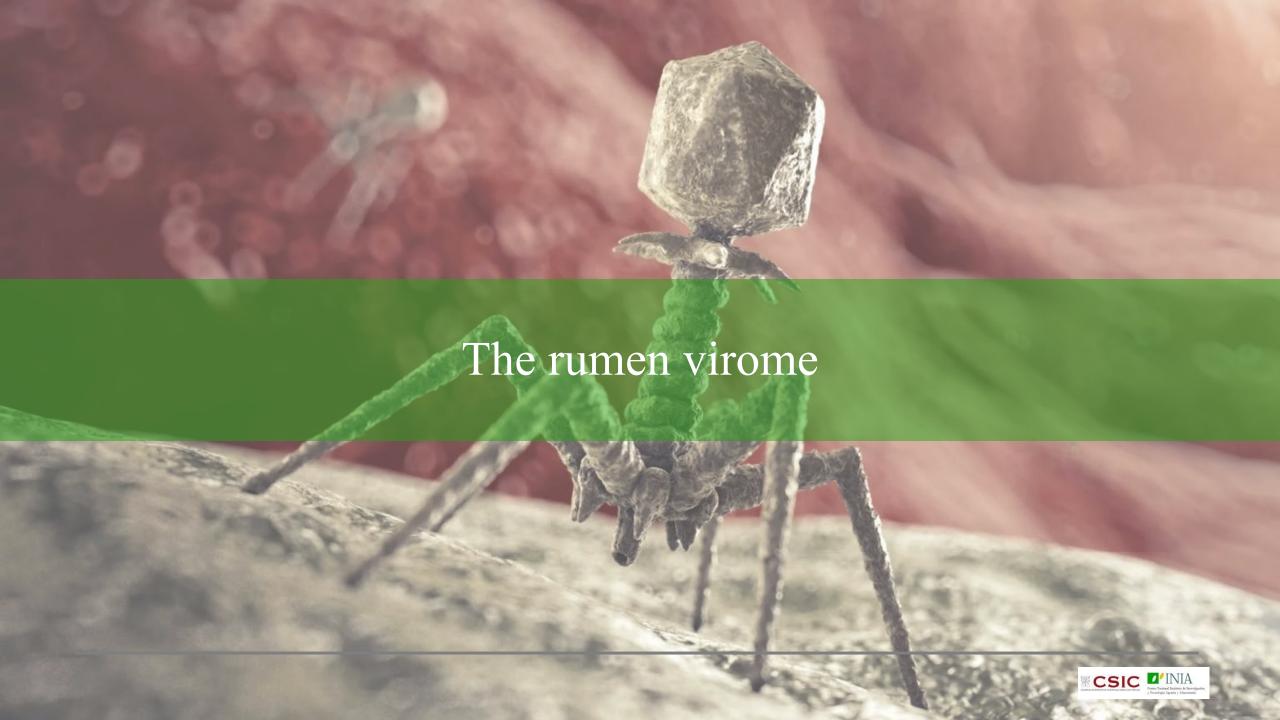
Corrected: Author Correction


Accepted: 26 November 2018
Published online: 09 January 2019

Beatriz Delgado 1, Alex Bach 2, Isabel Guasch 4, Carmen González, Guillermo Elcoso, Jennie E. Pryce & Oscar Gonzalez-Recio 1,5

J. Dairy Sci. 107:5881–5896 https://doi.org/10.3168/jds.2024-24014

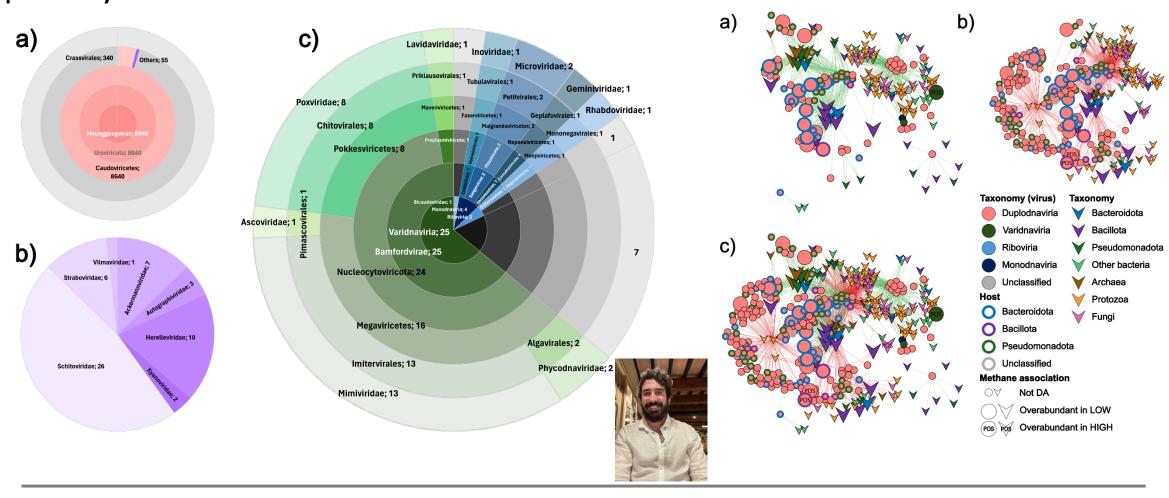
© 2024, The Authors. Published by Elsevier Inc. on behalf of the American Dairy Science Association[®]. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


The oral microbiome as a proxy for feed intake in dairy cattle

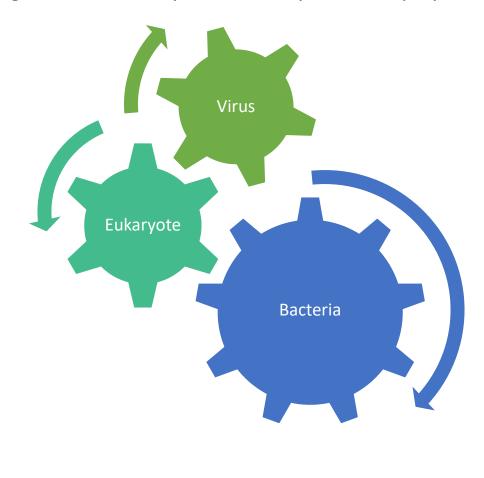
C. N. Marcos, ^{1,2}* • A. Bach, ³† • M. Gutiérrez-Rivas, ^{2,4} • and O. González-Recio² • Departamento de Producción Agraria, ETSIAAB, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid, Spain

Departamento de Produccion Agrana, ETSIAAB, Universidad Politecnica de Madrid, Ciudad Universitaria, 28040 Madrid, Spain
Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria – CSIC, 28040 Madrid, Spain
CICREA, 08007 Barcelona, Spain

⁴Blanca from the Pyrenees, Hostalets de Tost, 25795 Lleida, Spain



• A comprehensive exploration of the rumen virome unveiled a noteworthy population of phages and megaviruses potentially associated with methane emissions.


Objective

Large dimensionality, redundancy and interplay

Should the rumen microbiome composition be included as a trait of interest in dairy (and beef) cattle

Rumen microbiome community

• How to deal statistically in animal breeding?


Large dimensionality, redundancy and interplay

RESEARCH ARTICLE

Including microbiome information in a multi-trait genomic evaluation: a case study on longitudinal growth performance in beef cattle

Marina Martínez-Alvaro^{1,2*} , Jennifer Mattock², Oscar González-Recio³, Alejandro Saborío-Montero⁴, Zíqing Weng³, Joana Lima², Carol-Anne Duthie², Richard Dewhurst², Matthew A. Cleveland⁵, Mick Watson² and Rainer Rnehe^{2*}

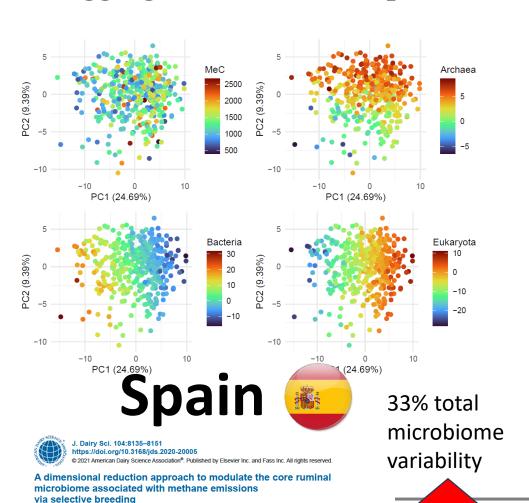
Selection of features
based on genetic
correlations with traits
of interest

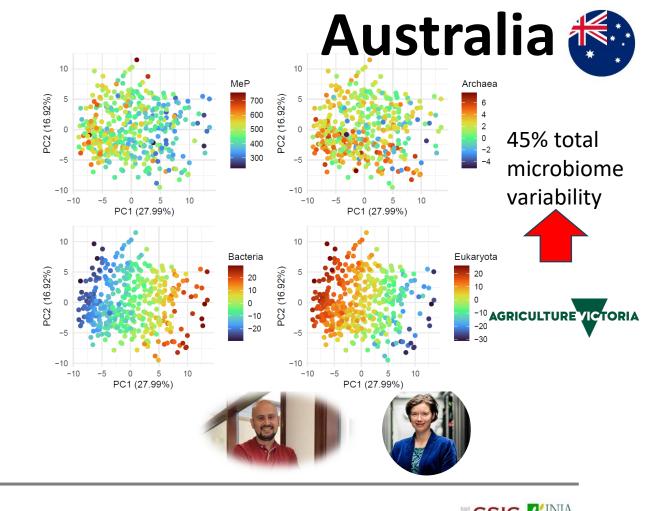
J. Dairy Sci. 104:8135–8151
https://doi.org/10.3168/jds.2020-20005
0 2021 American Dairy Science Association[®]. Published by Elsevier Inc. and Fass Inc. All rights reserved.

A dimensional reduction approach to modulate the core ruminal microbiome associated with methane emissions via selective breeding

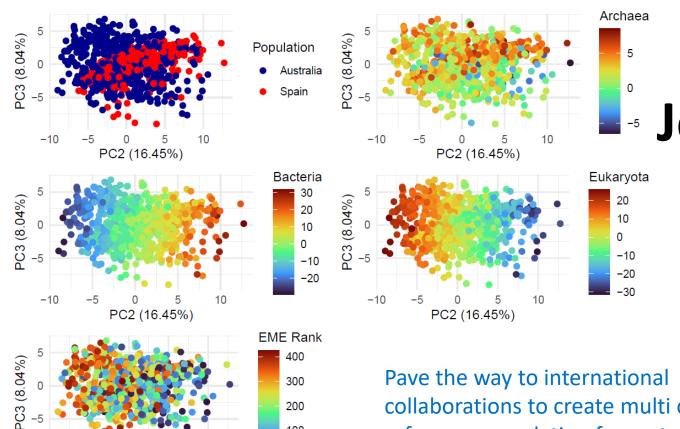
Alejandro Saborío-Montero, ^{1,2} O Adrian López-García, ¹ O Mónica Gutiérrez-Rivas, ¹ O Raquel Atxaerandio, ³ O Idoia Goiri, ³ O Aser García-Rodríguez, ³ O José A. Jiménez-Montero, ⁴ Carmen González, ¹ Javier Tamames, ⁵ O Fernando Puente-Sánchez, ⁵ O Luis Varona, ⁸ Magdalena Serrano, ¹ O Cristina Ovilo, ¹ O and Oscar González-Recio ^{1,4} O

Aggregated variables with Principal Component Analysis


Heritability estimates between 0.20 and 0.30



Similar microbiome composition and relationship with methane under 2 different production systems


Aggregated variables capture a relevant portion of microbial variability

Similar microbiome composition and relationship with methane under 2 different production systems

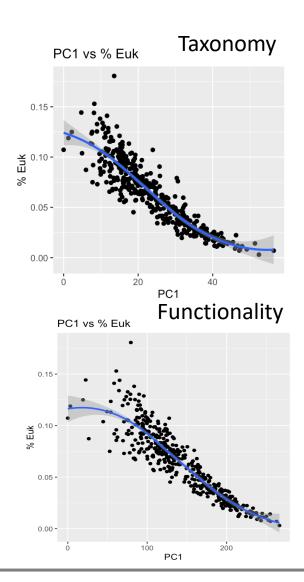
200

PC2 (16.45%)

Joint population

collaborations to create multi country reference population for metagenome composition

Agregated variables have a biological meaning

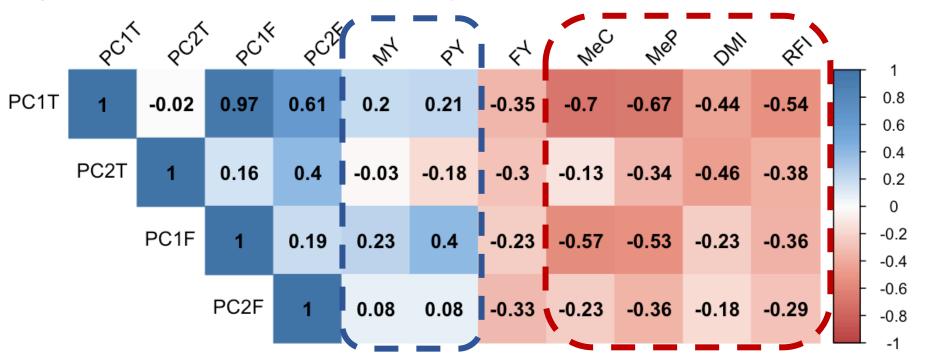


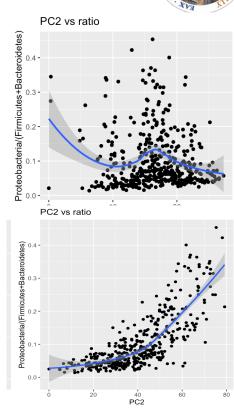
• First PC1 is related to Eukaryotes relative abundance

• PC2 is related to

 $\frac{Proteobacteria}{Firmicutes + Bacteroidetes}$

(Petri et al. 2013 & Auffret et al. 2017)





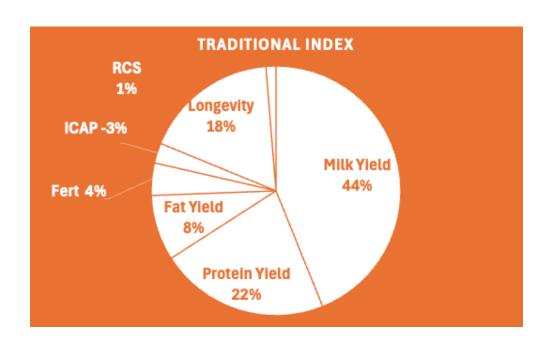
Rumen microbiome community

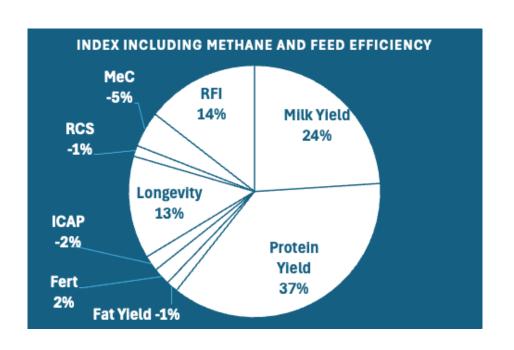
Genetic correlation between PC and other traits

- Aggregated microbial variables are favorably genetically correlated with milk, protein, methane emissions and feed efficiency (unfavorable with fat)
- Breeding for lower methane or feed efficiency may impact microbiota composition (dysbiosis)
- What are the expected consequences?

Challenges at selecting for microbiome composition

UNKNOWN ECONOMIC VALUE


UNCERTAIN DIRECTION OF BREEDING (COMPLEX MICROBIAL RELATIONSHIPS)

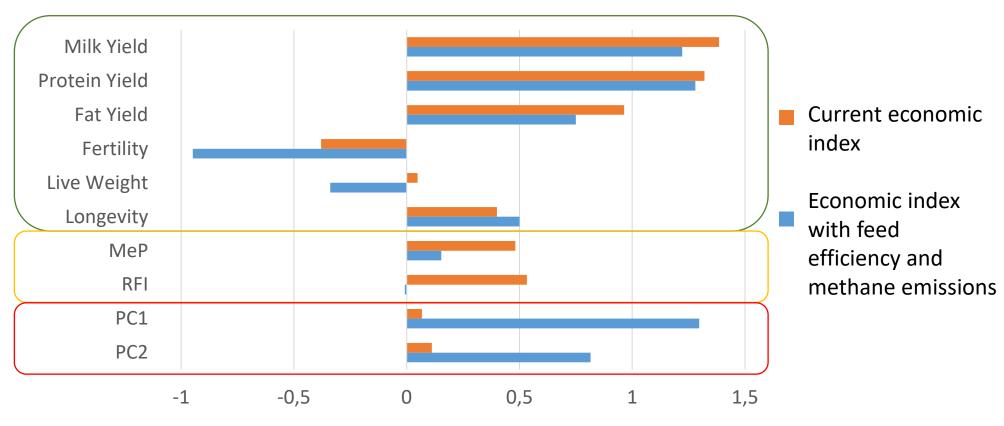


Example of implementation

TABLE TO TO THE PARTY OF THE PA

- Efficiency and sustainability index in Spanish Dairy cattle
 - Subindex (will be integrated in the total merit index)

→ Calculate expected genetic gain for each trait, including the correlated response on the microbial aggregated variables.


Example of implementation

• Efficiency and sustainability index in Spanish Dairy cattle

• Subindex (will be integrated in the total merit index)

Expected genetic gain (additive standard deviation units)

Take home message for future metagenomic interventions in breeding programs

01

Selection for methane emissions and feed efficiency may shift rumen microbiota composition

02

Aggregated
metagenome variables
can capture a large
rumen microbiome
variability

03

International collaborations

So far, the consequences are uncertain. Need microbiome phenotyping to control changes.

Attractive as metagenomic traits in breeding programs.

Coming research efforts in this area.

A. López-García

M. Gutiérrez-Rivas

C. González-Verdejo

N. Scrobota

I. Goiri

R. Atxaerandio

E. Ugarte

A. García-Rodríguez

J. López-Paredes

N. Charfeddine

J.A. Jiménez-Montero

