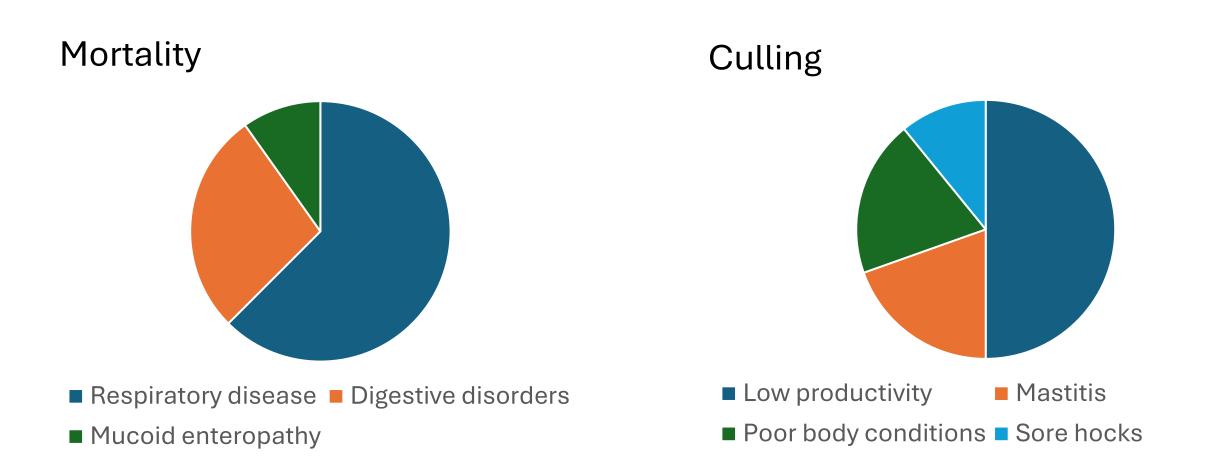

Exploring Mortality and Culling Causes of Breeding Does through Gut Microbiome Analysis

Biada I.*, Santacreu M.A., Ibáñez-Escriche N.

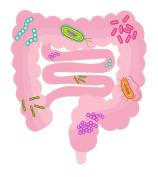
Institute for Animal Science and Technology, Universitat Politècnica de València, València 46022, Spain

Selection for **high litter size at weaning** in maternal lines has been **successful**


In Spain, adult female rabbits faced a **monthly mortality risk of 3.2%**, accompanied by a **culling risk of between 5.5 and 7%** (Rosell and González, 2009).

- High replacement rates
- Half of the breeders are culled in the first three parities.

The **main mortality** and **culling causes** are as follows:

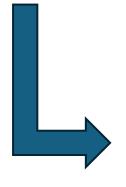


Understanding the causes of mortality and culling is important from an economic, health and welfare perspective

- Improve the longevity and productivity of the females and their litters
- Reduce economic losses in commercial farms
- Better animal health and welfare

Gut microbiota is often associated with immune system,
disease, and mortality (Fortun Lamothe and Boullier, 2007)

 Recent studies focused on the link between the gut microbiome in rabbits and their life expectancy (Funosas et al. 2021 and Biada et al. 2024)


 However, the relationship between microbiota and the causes of culling and mortality in rabbits remains unexplored

Objective

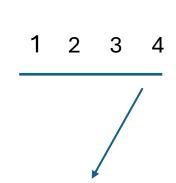
Compare the gut microbiome composition between different culling causes and mortality in female maternal lines

- This could guide **selection** against microbiomes that are associated with adverse outcomes
- Enable early detection of at-risk animals

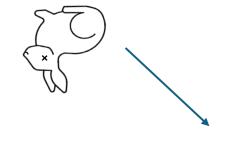
Samples collection

Number of parities

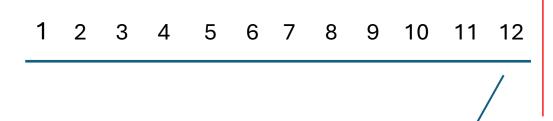
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

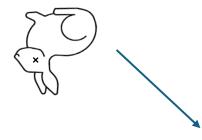


Universitat Politècnica de València


Maternal lines selected for litter size at weaning.

Samples collection


Mortality / culling cause



Samples collection

Number of parities

Mortality / culling cause

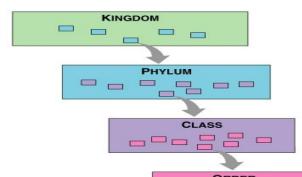
Samples collection

The recorded **mortality and culling causes** for each female were organized in three categories:

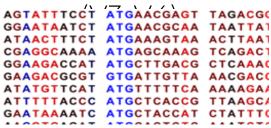
CR: Culled for reproductive reasons or infertility (n= 17)

CH: Culled for health reasons (n= 12)

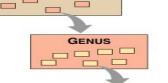
D: Deceased (n= 15)



Gut microbiota (Faeces)



16S rRNA sequencing



Amplicon Sequence Variants (ASV)

SPECIES

FAMILY

Core microbiome

- 1. Occurrence of at least 80% across all samples
- 2. Minimum relative abundance of 0.1%

The core microbiome of the entire dataset

The core microbiome specific to each group of mortality and culling cause

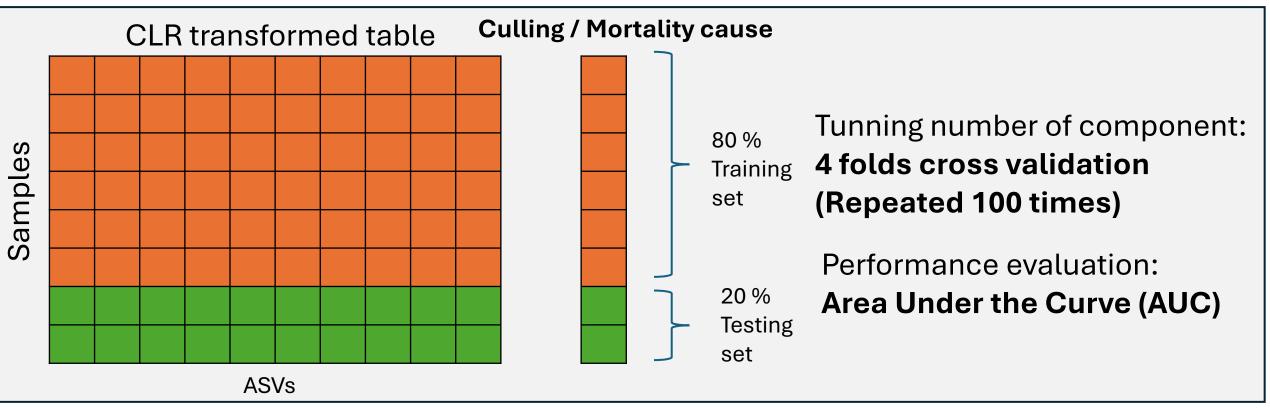
Partial Least Square Discriminant Analysis (PLS-DA)

- Removed variables present in less than 20% of samples
- Added a pseudo count to datasets to handle zeros

$$CLR(j|\mu) = log\left(\frac{x_j}{\mu}\right) = log(x_j) - log(\mu)$$

Partial Least Square Discriminant Analysis (PLS-DA)

Samples were collected from animals ranging from 26 to 172 weeks of age


The microbiome is **dynamic**, and the **age** of the animal is one of the main factors influencing microbial communities.

Correction for age effect using the "removeBatchEffect" function from the limma package in R

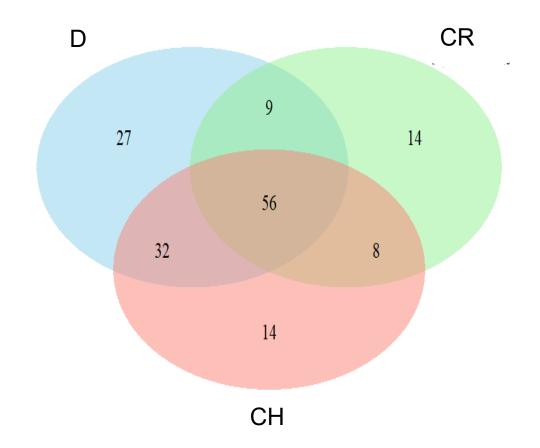
Partial Least Square Discriminant Analysis (PLS-DA)

Repeated x100

Variable selection: ASVs with Variable importance prediction (VIP) lower than 1 were iteratively eliminated until the model reached the lowest error.

Core microbiome

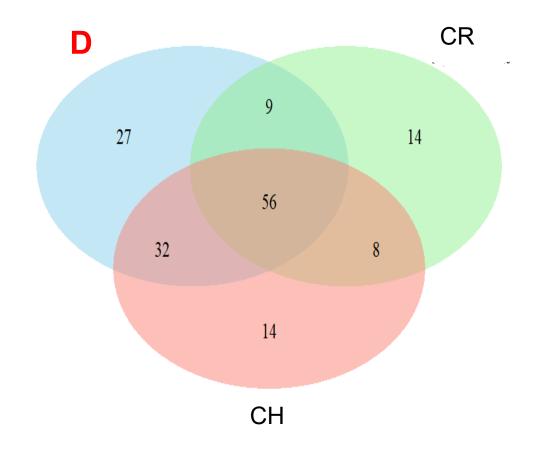
Whole dataset core microbiome of **98 ASVs**, and when collapsed to the genus level, the core microbiome was represented by **23 genera**.


Table 1. Core microbiome of each cull and mortality group for amplicon sequence variants (ASVs)

	Core ASVs	Unique ASVs
All dataset	98	0
Culling for reproductive causes (CR)	87	14 (16%)
Culling for health causes (CH)	110	14 (13 %)
Deceased (D)	124	27 (22%)

Core microbiome

Table 1. Core microbiome of each cull and mortality group for amplicon sequence variants (ASVs)


	Core ASVs	Unique ASVs
Culling for reproductive causes (CR)	87	14 (16%)
Culling for health causes (CH)	110	14 (13 %)
Deceased (D)	124	27 (22%)

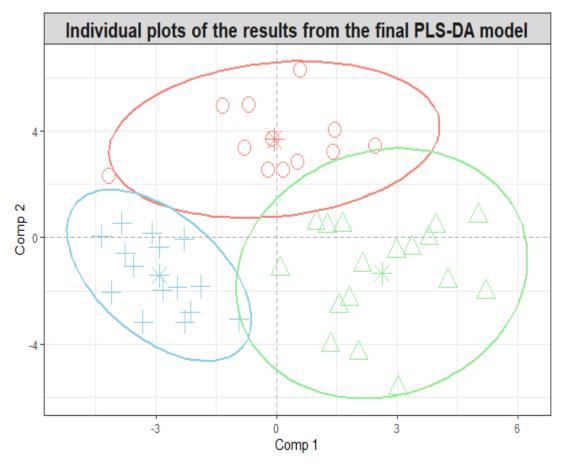
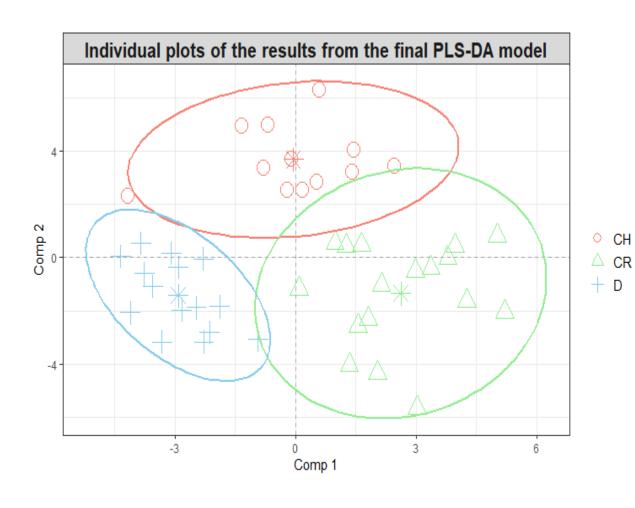

Core microbiome

Table 1. Core microbiome of each cull and mortality group for amplicon sequence variants (ASVs)

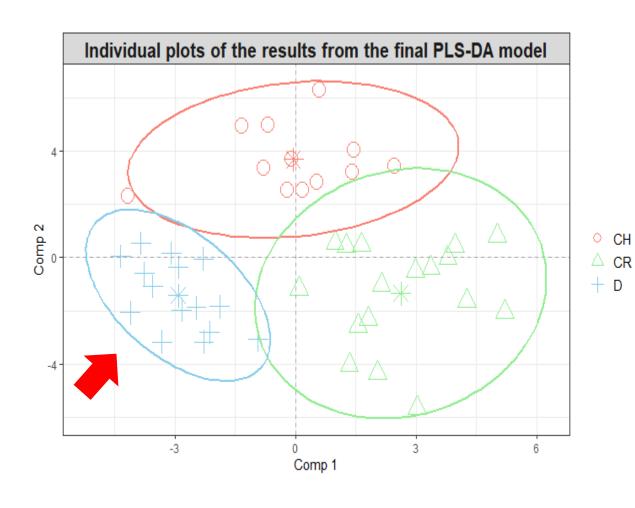
	Core ASVs	Unique ASVs
Culling for reproductive causes (CR)	87	14 (16%)
Culling for health causes (CH)	110	14 (13 %)
Deceased (D)	124	27 (22%)

PLS-DA


Number of variables selected	Number of components	Mean AUC	Standard deviation of AUC
59	2	0.97	0.04

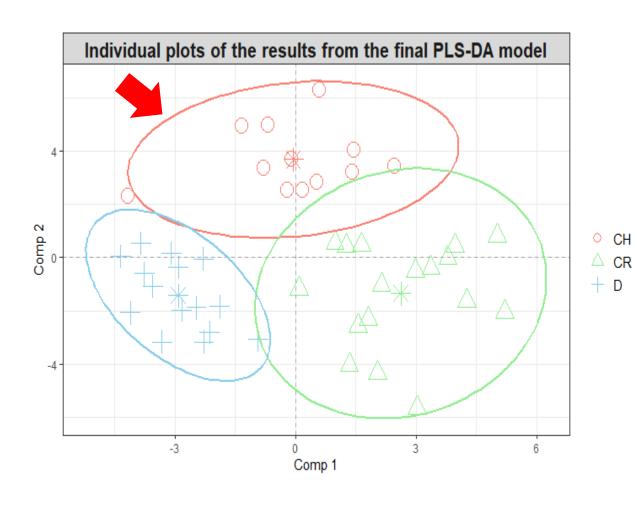
○ CH

 $\triangle \ \, \mathrm{CR}$


+ D

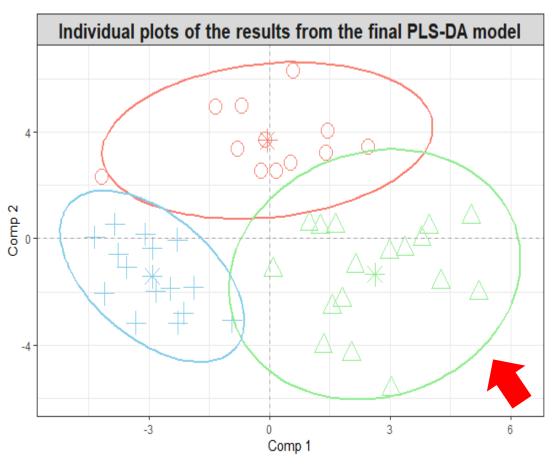
PLS-DA

Confusion matrix	Predicted as		
	D	СН	CR
Deceased (D)	96	0	4
Culling for health causes (CH)	8	90	2
Culling for reproductive causes (CR)	6	11	83


PLS-DA

Confusion matrix	Predicted as		
	D	СН	CR
Deceased (D)	96	0	4
Culling for health causes (CH)	8	90	2
Culling for reproductive causes (CR)	6	11	83

Very high accuracy for predicting **D** (96%), indicating strong performance, with only a small proportion is misclassified as CR (4%).


PLS-DA

Confusion matrix	Predicted as		
	D	СН	CR
Deceased (D)	96	0	4
Culling for health causes (CH)	8	90	2
Culling for reproductive causes (CR)	6	11	83

The model performs **very well** in predicting **CH** (90%), with some misclassification into D (8%) and CR (2%).

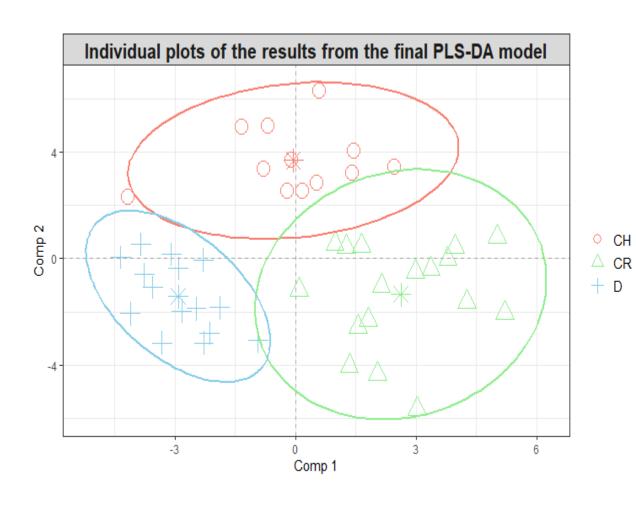
PLS-DA

Confusion matrix	Predicted as		
	D	СН	CR
Deceased (D)	96	0	4
Culling for health causes (CH)	8	90	2
Culling for reproductive causes (CR)	6	11	83

○ CH △ CR + D

The model performs **relatively well** in CR but has some misclassification into **D** (6%) and **CH** (11%).

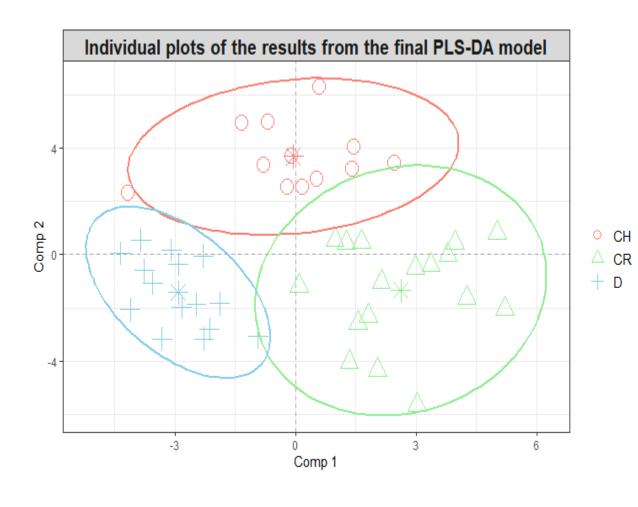
PLS-DA


Permutation matrix	Predicted as		
	D	СН	CR
Deceased (D)	33	30	37
Culling for health causes (CH)	32.5	30	37.5
Culling for reproductive causes (CR)	33	30	37

Permutation test (n=10000):

P-value: 0.0009

95% CI: [0.14, 0.57]


PLS-DA

Permutation matrix	Predicted as		
	D	СН	CR
Deceased (D)	33	30	37
Culling for health causes (CH)	32.5	30	37.5
Culling for reproductive causes (CR)	33	30	37

The permutation matrix indicates a performance close to **random chance**.

PLS-DA

Variables selected

Were associated with low longevity:

- Clostridia_UCG-014
- Clostridia_vadinBB60_group
- Christensenellaceae_R-7_group
- Akkermansia
- Tyzzerella
- *UCG_005*

PLS-DA

In agreement with the **core microbiome results**, the group with the highest predictive accuracy was group **D**, which consisted of **females that had died**.

Alterations and potential dysbiosis in their gut microbiota

Conclusions

 The microbiome of female rabbits was found to be different depending on the causes of culling and mortality.

 The deceased group had the most unique core microbiome and the highest prediction accuracy.

AGL2017-55921-C2-1-P PID2020-115558GB-C21

CIACIF/2021/005

Exploring Mortality and Culling Causes of Breeding Does through Gut Microbiome Analysis

Biada I.*, Santacreu M.A., Ibáñez-Escriche N.

Institute for Animal Science and Technology, Universitat Politècnica de València, València 46022, Spain