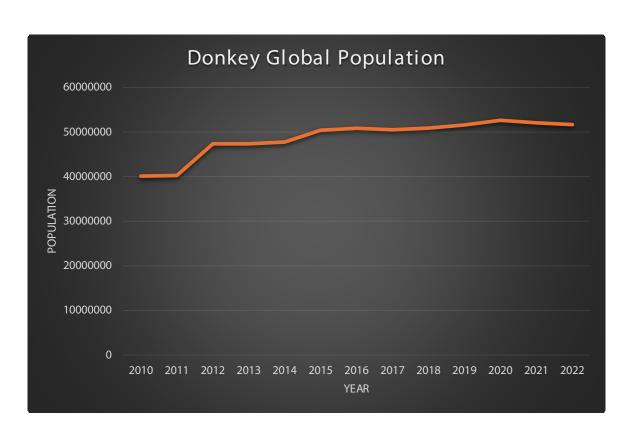


UNIVERSITÀ DEGLI STUDI DI SASSARI DIPARTIMENTO DI AGRARIA

PREDICTION OF BEHAVIOR ACTIVITY OF DONKEYS AT

PASTURE USING DATA FROM A TRI-AXIAL ACCELEROMETER

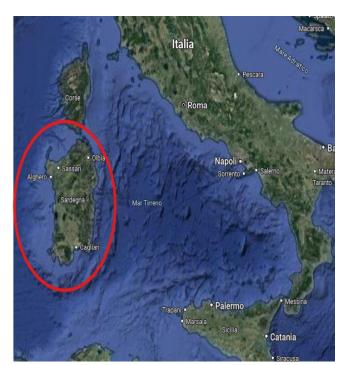

M. Congiu^a, P. Milia^a, S.P.G. Rassu^a, A. Cesarani^{ab}, C. Dimauro^a

^aDipartimento di Agraria, University of Sassari, Sassari 07100, Italy

^bDepartment of Animal and Dairy Science, University of Georgia, Athens 30602, GA, USA

INTRODUCTION

- ➤ In the last ten years the world donkey population has increased (FAO, 2022)
- ➤ Most of the population raised in least developed countries
- > Increasing of interest in developed countries
- ➤ Meat, milk, recreational, and hippo-theraphy
- ➤ Similarity between Donkey and human Milk


INTRODUCTION

➤ In Sardinia more than 8,000 donkeys are farmed (BDN, 2023)

> Sardo donkey is a Sardinia native breed

➤ Milk production and pet therapy

> Extensive farming system

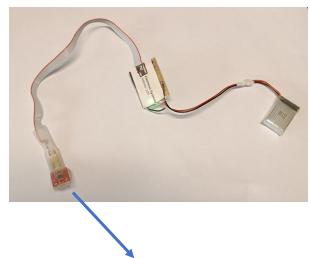
INTRODUCTION

> Precision livestock farming includes several tracking tools

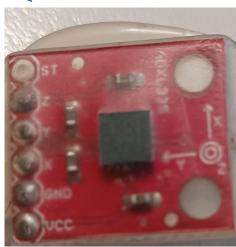
- > Tri-axial accelerometers has been widely used in animal's behavior studies:
 - Cattle (Brennan et al., 2021)
 - Sheep (Giovanetti et al., 2017)
 - Goats (Moreau et al., 2009)
 - Horses (Keller et al., 2022)
- ➤ No studies on donkeys at pasture using accelerometers

AIM

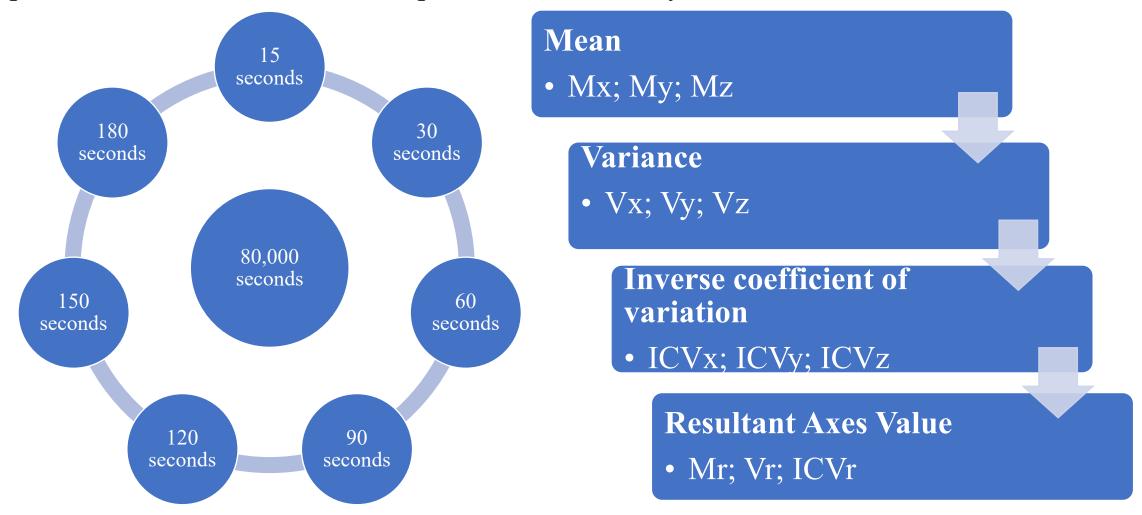
Aim of this research was to develop a statistical procedure to


discriminate activities (grazing, walking, and resting) of donkeys at

pasture using raw data derived from accelerometer devices


MATERIALS AND METHODS

- > Farm "Asinamento" Berchidda (SS)
 - Natural pasture area of 530 m2
 - 11 days experimental trial
 - 11 Donkeys
- ➤ Tri-axial accelerometer sensor in a collar bell
 - X Longitudinal
 - Y horizontal
 - Z vertical
 - Three peaks for each axis each second
 - Data storage in a Micro SD memory
- > Behavior recording
 - Video recording (2-3 h/day)



DATA PROCESSING

- Video elaboration to assign activity for each second of record
- Grouped data into time interval with predominant activity

STATISTICAL ANALYSIS

> ANOVA

$$y = \mu + B + \varepsilon$$

- Y =one of the 12 variables
- μ = overall mean
- B = Behavior (grazing, walking, resting)
- $\varepsilon = \text{random residual}$

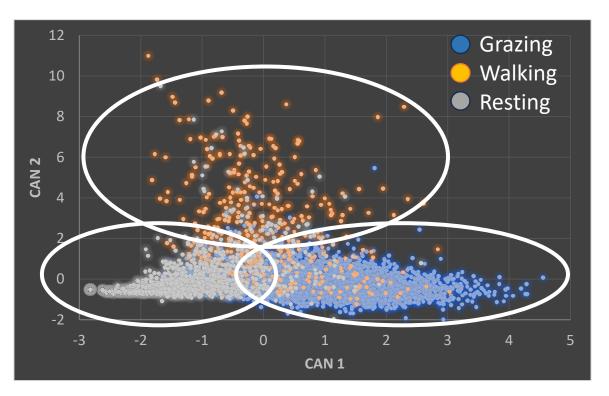
> CANONICAL DISCRIMINANT ANALYSIS

$$CAN = C_1X_1 + C_2X_2 + \dots + C_nX_n$$

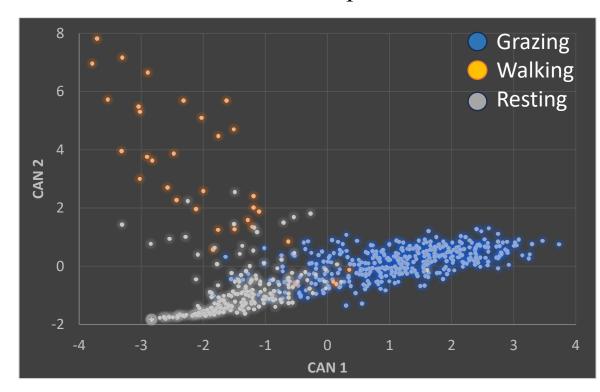
➤ Model Evaluation

- Bootstrap procedure
- Error rate and Accuracy
- F-score

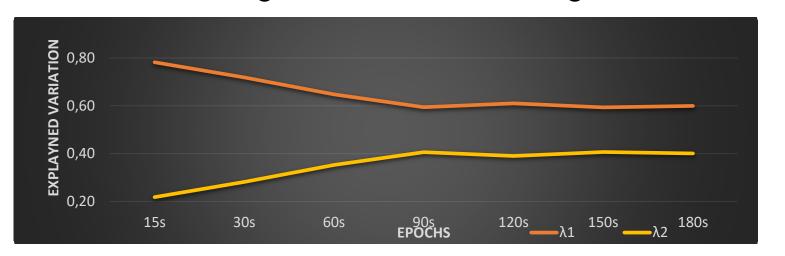
- ➤ Behaviors Frequency
 - 57% Grazing
 - 9% Walking
 - 34% Resting



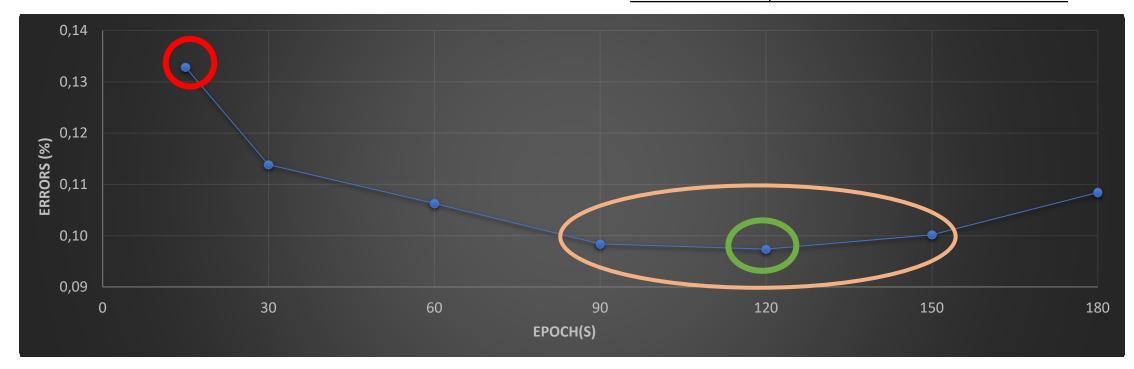
> ANOVA


- At least one of three behavior was significantly different in all epochs (p < 0.01)
- All Behaviors were significantly different in all epochs for M values
- No differences were found between Grazing and Walking for ICV variables

- ➤ M_r was discarded due to high multicollinearity
- > The three behaviors were significantly discriminated
- > CAN1 separated Grazing from Resting
- > CAN2 separated Walking from the other activities


CDA15s epoch

CDA 120s epoch


- > Trends of variance explained by the CANs among all epochs
 - λ1 Decreased from 0.80 to 0.60
 - λ2 increased from 0.20 to 0.40
 - Plateau around 60% (CAN1) and 40% (CAN2)
- > Euclidean distance in the space of CAN
 - Short and stable distance between Resting to Grazing
 - Increasing distance between walking and the others

Time	Euclidean		
epoch	Distance		
		Grazing	Resting
15 s	Walking	7.2	9.3
	Resting	7.7	
30 s	Walking	10.4	12.9
	Resting	8.7	
60 s	Walking	18.5	18.6
	Resting	8.3	
90 s	Walking	25.9	25.3
	Resting	9.1	
120 s	Walking	28.4	25.4
	Resting	8.7	
150 s	Walking	32.8	29.5
	Resting	8.6	
180 s	Walking	30.3	26.9
	Resting	8.3	

- > Overall error rate of assignment
- > 13.3% highest error rate 15 s
- > 9.7% lowest error rate 120 s
- > Similar results for 90, 120, and 150 epochs

Epochs	Accuracy	F-Score
15s	86.7	78.1
30s	88.9	82.2
60s	90.0	84.0
90s	90.4	86.8
120 s	90.9	87.2
150 s	91.0	87.1
180s	89.9	87.6

CONCLUSIONS

- Accelerometer data are suitable to detect behavior of donkeys at pasture which can be useful to improve management of donkeys raised in marginal areas
- ➤ The Canonical Discriminant Analysis was able to significantly separate the three behaviors
- The division of the whole dataset in time-epochs allowed to find the best setting to improve the accuracy of model
- ➤ 120s epochs showed highest accuracy, whereas 90s and 150s showed close results

Acknowledgments

This study was carried out within the Agritech National Research Center and received funding from the European Union Next-GenerationEU (PIANO NAZIONALE DI RIPRESA E RESILIENZA (PNRR) – MISSIONE 4 COMPONENTE 2, INVESTIMENTO 1.4 – D.D. 1032 17/06/2022, CN00000022)

The authors are also grateful to Antonio Mazza owner of "Asinamento" farm for his availability and technical assistance

THANK YOU FOR YOUR ATTENTION!

