Genotype by environment interaction for milk production traits in conventional and organic Dutch dairy farms

E. L. P. Guennoc¹, J. Hinken¹, M. G. J. Edens², M. S. Gilbert², J. Dijkstra², H. Bovenhuis¹

EUROPEAN

GREEN

DEAL

- ¹ Wageningen University & Research, Animal Breeding and Genomics, Droevendaalsesteeg 1, 6700 AH Wageningen, Netherlands
- ² Wageningen University & Research, Animal Nutrition, De Elst 1, 6708 WD Wageningen, Netherlands

Background

By 2030:

- 25% agricultural land is organic
- Decrease nutrient losses by 50%

Different practices between organic and conventional farms, e.g. regulations on organic farms:

- > 60% of roughage
- No chemical fertilizer
- Compulsory access to grazing

Genotype by environment interaction (G×E) may lead to a re-ranking of animals between two environments

Consumers' demand for organic products

+ 31% organic dairy farms in The Netherlands between 2016 and 2021 *

Objectives

- → Define farm environments more accurately in terms of nitrogen (N) and phosphorus (P) efficiency and ration characteristics.
- → Analyse G×E between first parity Holstein Friesian cows on conventional (CF) and organic (OF) dairy farms in the Netherlands.

Material and methods - Farm characteristics

	Conventional	Organic	
KRINGLOOP KRINGLOOP	1,050 farms		
WIJZER	2016 to 2021		
Milk yield;	4,971 records		
N and P efficiency (herd level);		542 records	
Ration composition (concentrate,			
fresh grass, grass silage, maize			
silage and others, as % of dry			
matter (DM) in the ration)			
Permanent grassland	3,282 records	400 records	

Results - farm characteristics

	Conventional			Organic		
	Mean	SD	CV	Mean	SD	CV
Milk yield (kg/cow/year)	9031	1088	0.12	7435	1248	0.17
N efficiency (%)	25.2	2.2	0.09	23.5	2.9	0.12
P efficiency (%)	35.2	3.5	0.10	30.3	4.3	0.14
Concentrate (% DM)	26.9	5.5	0.20	20.3	7.2	0.35
Fresh grass (% DM)	9.3	7.8	0.85	27.1	11.9	0.44
Grass silage (% DM)	40.4	9.5	0.23	45.2	10.7	0.24
Maize silage (% DM)	17.7	10.4	0.59	5.2	8.0	1.55
Other (% DM)	5.6	5.6	1.00	2.2	3.8	1.73
Permanent grassland (ha)	36.2	26.8	0.74	58.9	45.0	0.76
Permanent grassland (%)	62.6	30.7	0.49	73.8	33.3	0.45

Table 1. Mean values, standard deviations (SD) and coefficients of variation (CV) of farm characteristics on CF and OF. All variables are significantly different between CF and OF (P < 0.01, t-test)

Material and methods – GxE between OF and CF

	Conventional	Organic	
CRV	(status in 2021)		
	852 farms	224 farms	
Milk (milk, fat and protein yield)	96,527 records	15,071 records	
Somatic Cell Count (SCC)	92,052 records	14,270 records	
1st parity cowe at leas	t 60 % Halstoin Fried	ian	

1st parity cows, at least 60 % Hoistein Friesian

 $Y_{ijkl} = \mu + HYS_i + Breed_j + LL_k + \beta \cdot AFC_{ijkl} + Animal_{ijkl} + e_{ijkl}$

 Y_{iikl} : observation on animal I; μ : overall mean for the trait; HYS_i : Herd-Year-Season (2016 to 2021; 4 seasons; i = 1 to 2,126 for OF and 1 to 11,938 for CF); Breed; Breed combination (j = 1 to 14); LL_k : Lactation length (k = 1 to 6, grouped as: < 300 d, 300 - 350 d, 351 - 400 d, 401 - 450 d, 451 - 500 d, > 500 d)); AFC_{ijkl} : Age at first calving (in months); β : regression coefficient for linear regression on AFC; $Animal_{ijkl}$: random additive genetic effect of animal I; e_{iikl} : residual

Results - GxE between OF and CF

	h ²		r _g
	Conventional	Organic	
305-d milk (kg)	0.45 (0.01)	0.37 (0.02)	0.96 (0.02)
305-d fat (kg)	0.41 (0.01)	0.36 (0.02)	0.96 (0.02)
305-d protein (kg)	0.37 (0.01)	0.31 (0.02)	0.95 (0.02)
Fat (g/kg)	0.69 (0.01)	0.67 (0.02)	0.99 (0.01)
Protein (g/kg)	0.72 (0.01)	0.67 (0.02)	0.99 (0.01)
SCC	0.04 (0.01)	0.03 (0.01)	0.96 (0.17)

Table 2. Heritability (h^2 , SE) for traits on CF and OF; and genetic correlation (r_a , SE) between the two environments. G×E is considered significant for $r_a < 0.80$.

Conclusions & further research

- With $r_a > 0.80$, no G×E was found between organic and conventional farms for the 6 milk production traits.
- Milk yield, N and P efficiency, ration composition and permanent grassland are significantly different between OF and CF. Moreover, variation is observed within CF and OF, especially regarding ration composition.
- Further analyses will be conducted on G×E interactions between organic and conventional farms, including more farm characteristics, such as ration composition and N and P efficiency.

