

Breeders' vision to meet future livestock sustainability goals through novel technologies - A modified Delphi study

Margo Chase Topping & Andrea Doeschl-Wilson

Margo Chase-Topping Pieter Knap

TRAnsforming the **DE**bate about UK livestock system transformation (TRADE)

Motivation

Livestock today face unprecedented threats

Extreme climate

Resource shortage

Infectious pathogens

Sub-optimal rearing conditions

Motivation

... and have a negative impact on planetary health

Greenhouse gas emissions

21 % Other position of the fund use Production

14 % Decircly & Decircly & Other position of the production

14 % Other positive & Other posit

Zoonotic diseases / antimicrobial resistance

Resource shortage

Loss in biodiversity

Motivation

"A future with a sustainable animal agriculture can be created with the contribution of animal breeding and reproduction."

But how?

Can novel technologies help to create Livestock 2.0?

FABRE-TP (Europe's primary Farm Animal breeding and reproduction technology platform) https://www.fabretp.eu/breeding-for-a-sustainable-animal-production.html

Aims

- 1. Collect the opinion of animal breeders on novel breeding technologies for sustainable livestock production
- 2. Obtain a ranking of the technologies across different sustainability goals allowing for feasibility, cost-effectiveness and social acceptance
- 3. Determine barriers for adopting certain technologies

Approach

Modified Delphi study

Online questionnaire to collect expert opinions on how to achieve sustainability goals with novel breeding technologies

Approach

Modified Delphi study

Online questionnaire to collect expert opinions on how to achieve sustainability goals with novel breeding technologies

Experts: Animal breeders

- For main farmed animal species in the UK:
 Cattle (beef & dairy), sheep, pigs, chickens (broilers & layers), ducks, turkeys, salmon
- Work for breeding company, breed society, levy board or other public body, consultancy
 - considerable UK market
 - able to influence implementation of technologies
 - cover a range of influential positions, e.g. director of research, marketing, breeding goal & genetic evaluations, consultancy

Approach

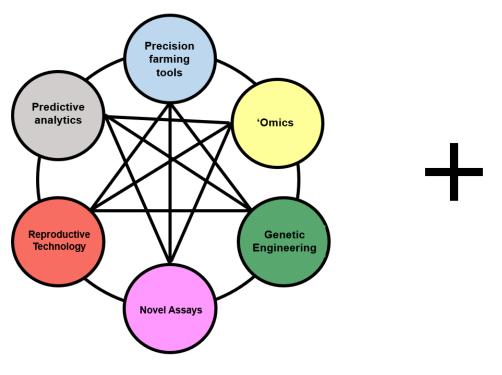
Modified Delphi study

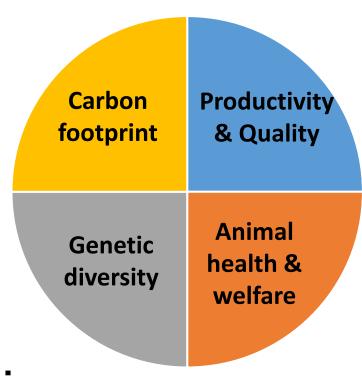
Online questionnaire to collect expert opinions on how to achieve sustainability goals with novel breeding technologies

Experts: Animal breeders

- For main farmed animal species in the UK:
 Cattle (beef & dairy), sheep, pigs, chickens (broilers & layers), ducks, turkeys, salmon
- Work for breeding company, breed society, levy board or other public body, consultancy
 - considerable UK market
 - able to influence implementation of technologies
 - cover a range of influential positions, e.g. director of research, marketing, breeding goal & genetic evaluations, consultancy

Technologies:


Focus on new technologies that may be useful for animal breeding, where significant advances have been made, and where adoption in the UK may be considered feasible

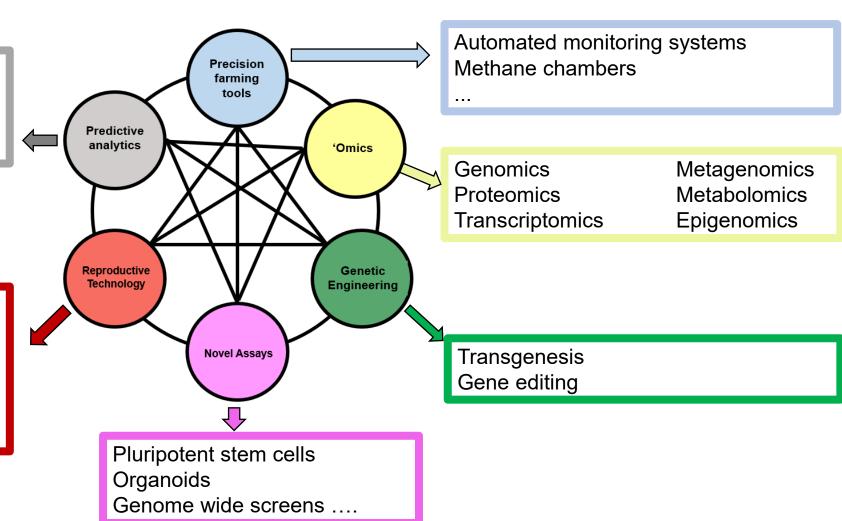


Online questionnaire

6 groups of technologies

4 sustainability goals

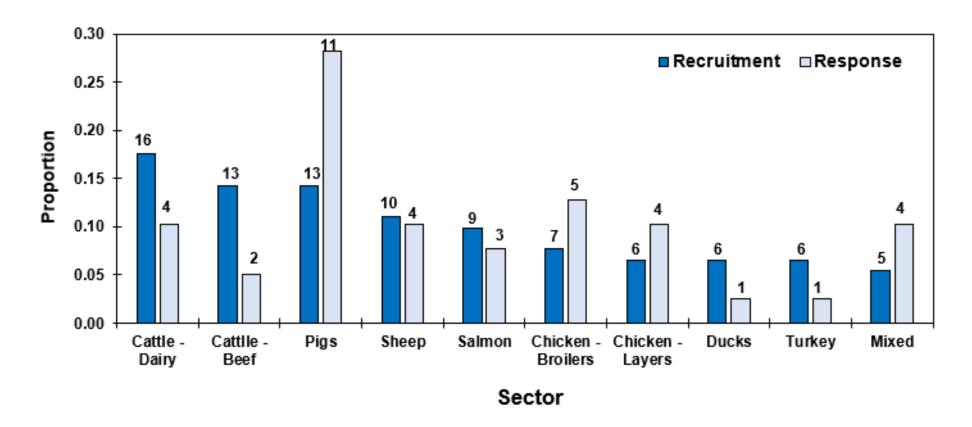
3 criteria for implementation

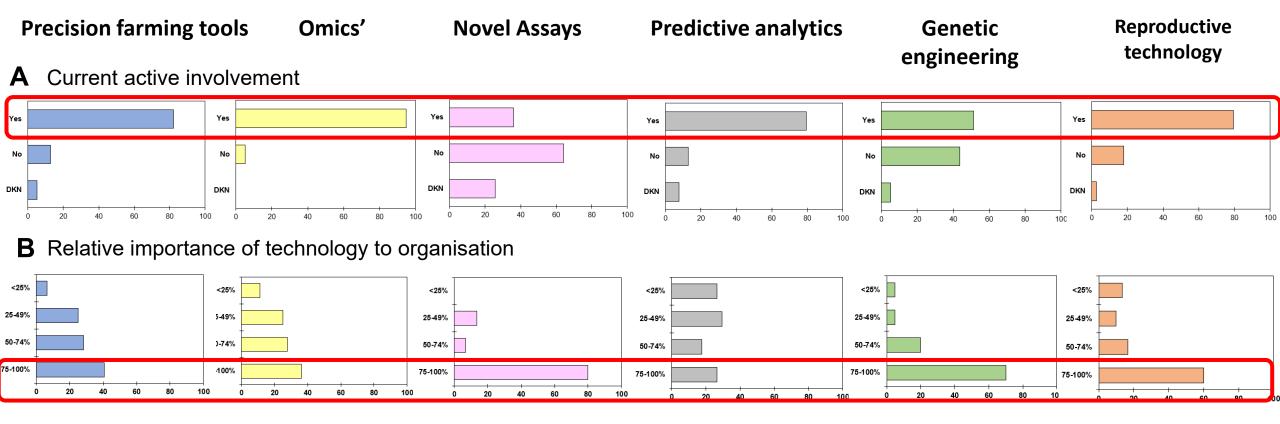


Novel technologies

Presented in a booklet that the participants read prior to answering the questionnaire

Hierarchical mixed models Prediction models (e.g. mechanistic) Deep learning


Artificial Insemination
Sperm / embryo sexing
In-vitro fertilisation
Gene drives
Surrogate host technology
Cryopreservation ...



Recruitment population vs Response population

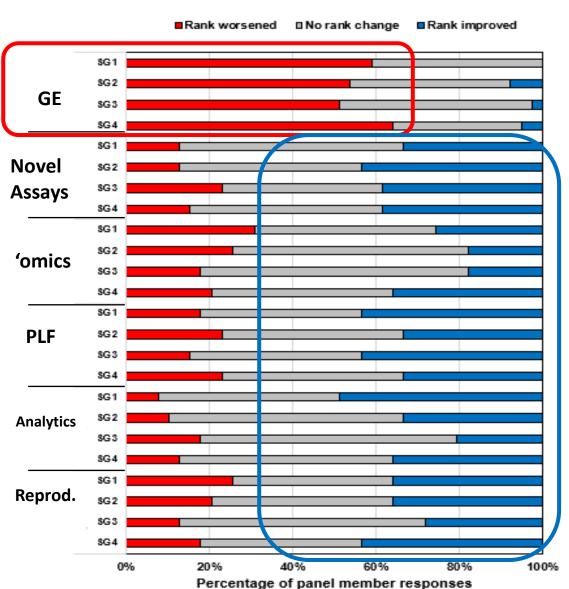
- Survey link was sent to 91 potential panel members across all sector
- To date 43% (39/91) responded THANK YOU!
 - All sectors covered, though not equally

Preliminary results: 1. Current use of technology

A: Is your organisation currently actively involved in the development, testing or implementation of the following new technologies (Yes, No, do not know (DKN))

B:If you use a technology what is the relative importance of each technology to your organisation yearly workflow in terms of percent of worktime allocated to each technology (<25%, 25-49%, 50-74%, 75-100%)

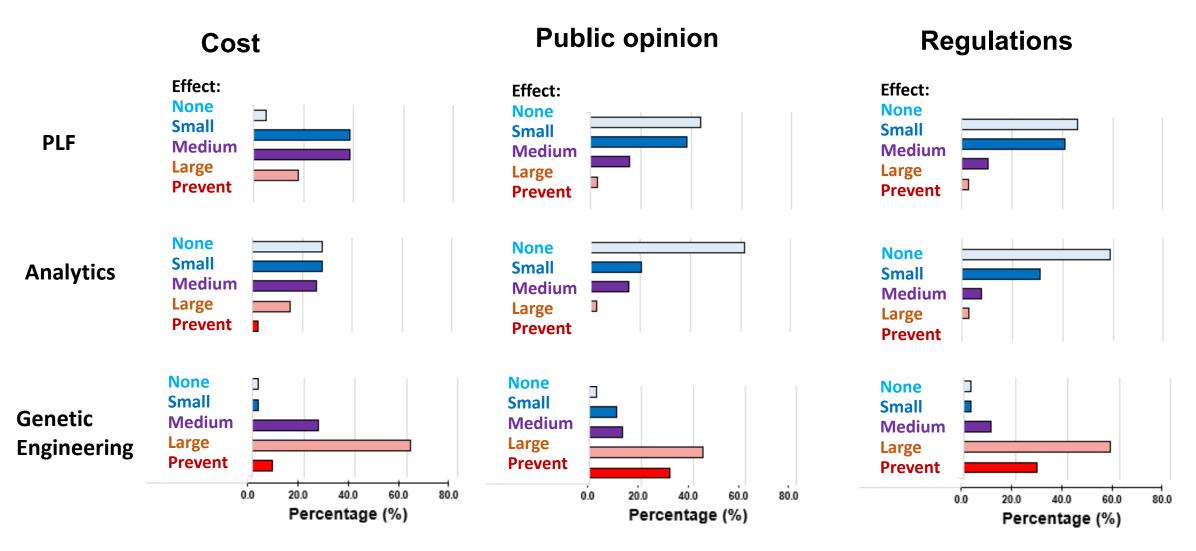
2. Ranking based on technological feasibility only for each Sustainability Goal (SG)


Technology Group	SG1 Env. footprint rank (range)	SG2 Productivity & quality rank (range)	SG3 Genetic diversity rank (range)	SG4 Animal health & welfare rank (range)
Precision farming tools	2 (1-4)	1 (1-3)	4 (1-5)	1 (1-6)
'Omics	1 (1-3)	1 (1-3)	1 (1-3)	1 (1-6)
Genetic engineering	5 (1-6)	5 (1-6)	5 (1-6)	4 (1-6)
Novel assays	5 (2-6)	5 (1-6)	5 (1-6)	5 (1-6)
Reproductive technologies	4 (1-5)	4 (1-5)	3 (1-5)	5 (1-6)
Predictive analytics	2 (1-4)	3 (1-4)	1 (1-4)	3 (1-6)

- Rankings of the technology groups based on technological feasibility only were fairly consistent for all 4 sustainability goals
- 'Omics was the highest ranked technology group, either alone (SG1) or tied (SG2 4)
- Large variation in ranking between experts

3. Change in ranking

- For most technology groups the experts' rankings either did not change (grey) or improved (blue) after cost and societal acceptance were considered
- Rankings for Genetic Engineering worsened (red)
 across all sustainability goals.


4. Overall Ranking across all Sustainability Goals (SGs)

Technology Group	Technology only rank (range)	Technology + Cost rank (range)	Technology + Cost + Society rank (range)
Precision farming tools	2 (1-6)	3 (1-6)	1 (1-6)
'Omics	1 (1-6)	1 (1-6)	3 (1-6)
Genetic engineering	5 (1-6)	5 (1-6)	6 (1-6)
Novel assays	5 (1-6)	5 (1-6)	5 (1-6)
Reproductive technologies	4 (1-6)	4 (1-6)	4 (1-6)
Predictive analytics	2 (1-6)	1 (1-6)	1 (1-6)

Across all sustainability goals, accounting for cost and societal acceptance Precision Farming Tools & Predictive analytics are tied for the top technology group

5. Barriers to Adoption

Cost is the largest perceived barrier, except for Genetic Engineering!

Summary & Conclusions

- These results are preliminary:
 - some groups were underrepresented.
 - likely species differences & other factors, not yet examined
- Breeders have a strong vision about future technologies to improve sustainability
 - But different opinions
- Rankings differed slightly between sustainability goals
- Cost has a large effect on the adoption of all technology groups, more so than public opinion and regulations (except for Genetic Engineering)
- Overall winner: Predictive Analytics & Precision Farming Tools
 - Lowest ranking: Novel assays & Genetic Engineering

Acknowledgements

Core Delphi Team: (University of Edinburgh)

Margo Chase-Topping

Jay Burns
Isabel Fletcher
Gregor Gorjanc
Dominic Moran

Concept and Design

Pieter Knap (Genus-PIC)
Marco Winters (AHDB)
Ana Granados (EFFAB)
Roslin colleagues:
Denis Headon
Dan Macqueen
Mark Stevens
Emily Clark

Pilot group

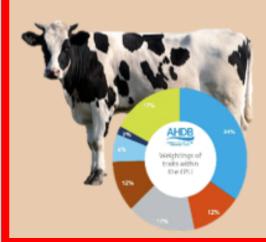
Geena Cartick (EFFAB)
Hans Cheng (Uni Michigan)
Pieter Knap
Wilson group members:
Duygu Madenci
Ricardo Pong-Wong
Masoud Ghaderi Zefreh
Jamie Prentice
Saif Agha

The survey deadline has been **extended to September 23**rd so there is still a chance to add your opinion to the discussion. We would especially like comments from Cattle (beef and dairy);

Breeding societies which are underrepresented in this presentation

TRAnsforming the DEbate about UK livestock

system transformation (TRADE)

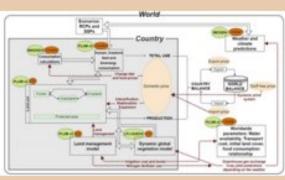

WP1: Narrative synthesis

- Published paper on worldviews, values and perspectives for livestock sector future (Blair et al., 2023)
- Global review of sustainable livestock literature
- Stakeholder mapping and key informant interviews to inform workshop design and ensure stakeholder representation

model farm diet and iet and ie

WP2: Production-side

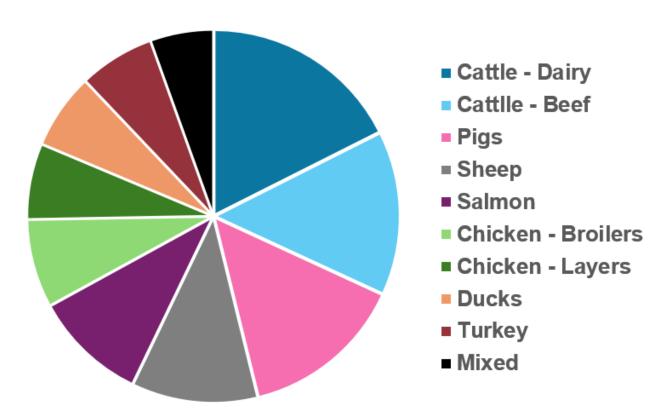
- Delphi study with livestock breeding community
- Iterative investigation of novel technologies and factors affecting their uptake and impact (e.g. target producers, costs, benefits, readiness and barriers)


WP3: Consumption-side

- Using National Diet and Nutrition Survey data to establish if declines in meat consumption are driven by meat-free days, meat-free meals or smaller portion sizes
- Literature review on meat substitution behaviours
- Establishing willingness to pay for 'better' animal sourced foods

WP4: System model

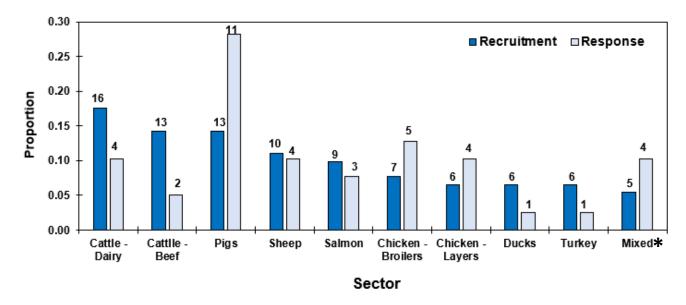
- Use socio-economic landuse model (PLUM) to explore narrative scenarios including production- and consumption-side innovations
- Identify trade-offs, responses and cross-scale interactions within a dynamic system


For full-size image, see Majre et al. (2022)

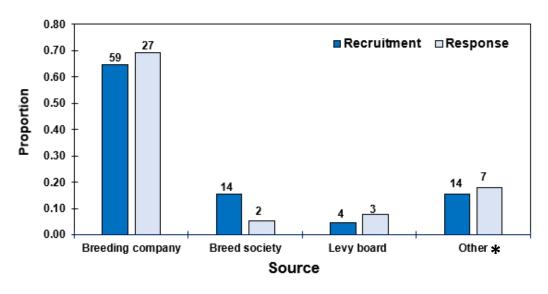
Recruitment population

 Survey link was sent to 91 potential panel members from various sectors

- Source
 - Breeding company (n=59; 65%)
 - Breed society (n=14; 15%)
 - Levy board (n=4; 4%)
 - Other* (n=14; 15%)



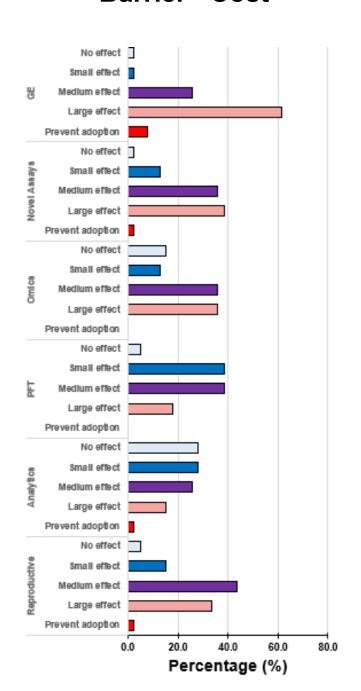
^{*}Other includes genetic evaluation service, consultancy, conservation charity; semen distribution

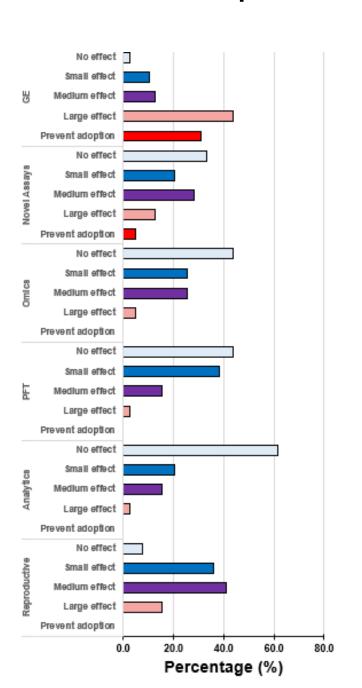


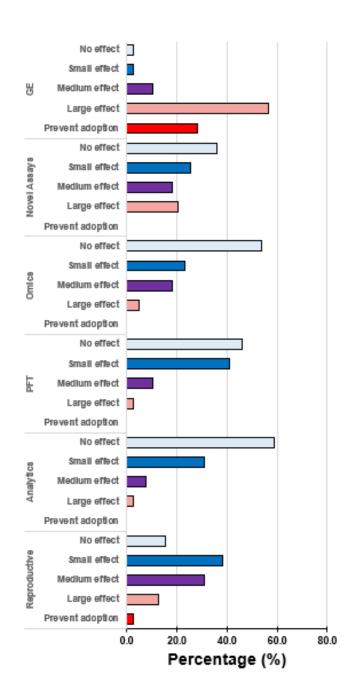
Recruitment population vs Response population

- To date n=39 responses; 43% (39/91) responded THANK YOU!
- Comparison of the proportion of panel members who completed the questionnaire to the panel members
 in the recruitment list for Sector (left graph) and source (right graph)

Numbers above the bars represent the number of panel members who completed the questionnaire


Numbers above the bars represent the number of panel members who completed the questionnaire


*Other includes genetic evaluation service, consultancy, conservation charity; semen distribution


^{*}Mixed can include panel members from Cattle beef/Dairy background

Barrier – Public opinion

Barrier - Regulations

