Evaluating environmental sustainability of Dutch dairy farms towards 2030

Preliminary results of a modeling study

75th EAAP Annual Meeting, Florence

Marion de Vries¹, Aart Evers¹, Michel de Haan¹, Paul Galama¹, Joan Reijs²

Wageningen Livestock Research¹, Wageningen Economic Research²

Introduction

- Dairy production systems cause pressure on various sustainability aspects (e.g. global warming, eutrophication, acidification)
- Various policy measures are implemented for Dutch dairy farms, e.g. losing manure derogation, buffer strips and limitations to total nitrogen application
- At the same time: ongoing trends in farm size and productivity, climate change
- ➤ Model effects of policy measures and trends on technical and environmental performances of Dutch dairy farms towards 2030

Materials and methods (i)

- Define 6 farm types, representative of variation in Dutch dairy sector (region, herd size, intensity, grazing, organic/conventional)
- Farm structure and performance based on Dutch Agricultural Census in 2022
- Binary choices (e.g. soil type, grazing, organic)

Farm	Soil type	Herd size (cows)	Intensity (kg milk/ha)	Grazing (y/n)	Organic/ conventional	
1. Organic	Clay	90	8200	Υ	Org	
2. Peat	Peat	70	12500	Υ	Conv	
3. Clay-large	Clay	170	16700	Υ	Conv	
4. Sand-small	Sand	70	15400	Υ	Conv	
5. Sand-large-extensive	Sand	140	16100	Υ	Conv	
6. Sand-large-intensive	Sand	175	28000	N	Conv	

Materials and methods (ii)

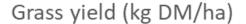
6 farms in reference scenario 2022 6 farms in future scenario 2030

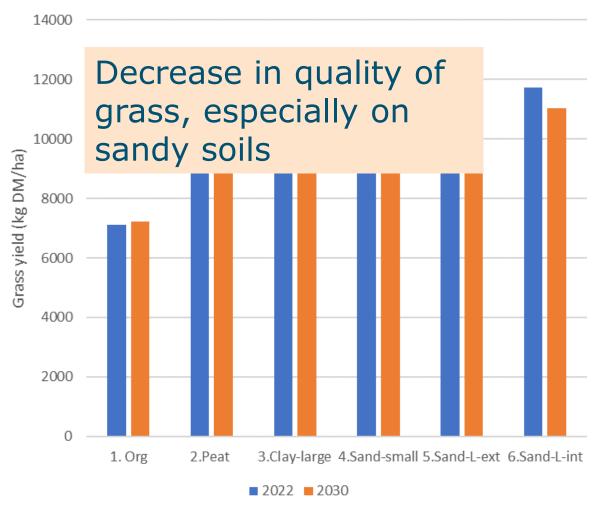
- Simulation of dairy farms using 'DairyWise'
 - Empirical farm-scale model
- Quantification of environmental impacts in Annual Nutrient Cycling Tool (ANCA)
 - Ammonia emission
 - Soil nitrogen surplus
 - Greenhouse gas emissions (LCA)

Assumed changes towards 2030 - policy measures

- No derogation (max. 170 kg N/ha)
- Limitation to total nitrogen use in Nutrient Polluted areas (20% reduction; 100% of area on sand, 50% on other soils)
- Mandatory buffer strips (2/3/4% of area for peat/clay/sand)
- Mandatory crop rotation on sandy soils (3 y grass/3 y maize)
- Higher groundwater table in peat areas (20 cm increase)
- Crude protein (CP) level of feed ration 160 g/kg DM
- Mandatory low-emission barn (Province Noord-Brabant)

Assumed changes towards 2030 - trends

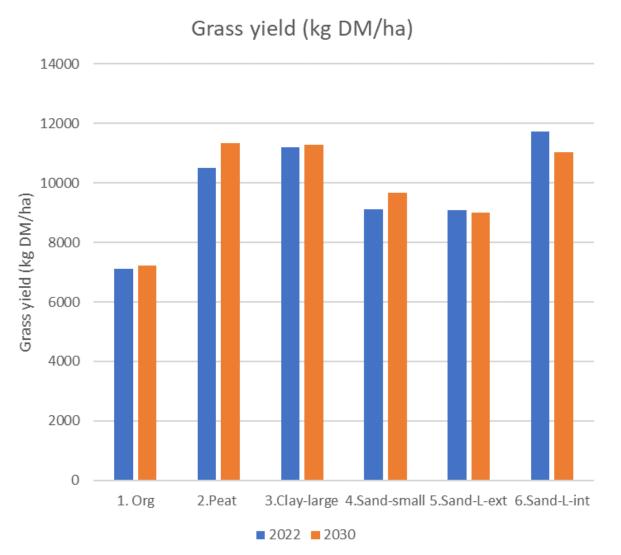

- Increase in herd size (13-17% increase in number of milking cows*)
- Increase in farm area (based on same intensity (kg milk/ha) as reference scenario)
- Increase in milk yield per cow (+70 kg/cow/y, +35 on peat)
- Trends in forage yields (genetic component)
 - Grass: +44 kg DM ha⁻¹ year⁻¹
 - Maize: +173 kg DM ha⁻¹ year⁻¹, +1.7 feed unit milk (VEM) kg DM⁻¹ year⁻¹
- Increase in drought (reference scenario: typical weather year (2015), scenario 2030: warmer winter, precipitation deficit in spring, heat wave in summer (2022)

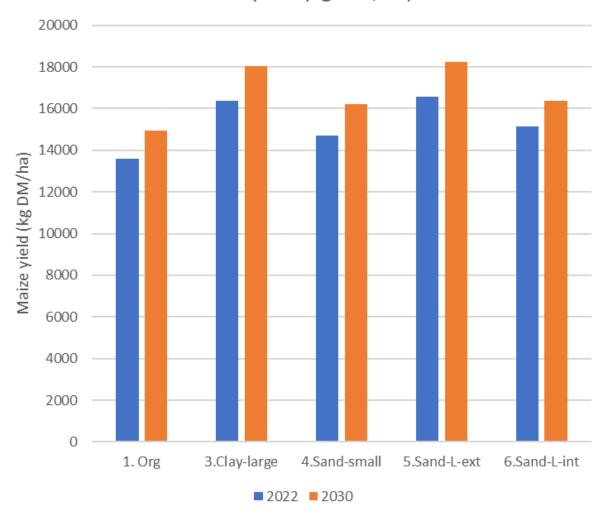


^{*} Beldman et al. 2020. De Nederlandse melkveehouderij in 2030; Verkenning van mogelijke ontwikkelingen op basis van economische modellering. WECR rapport 2020-090.

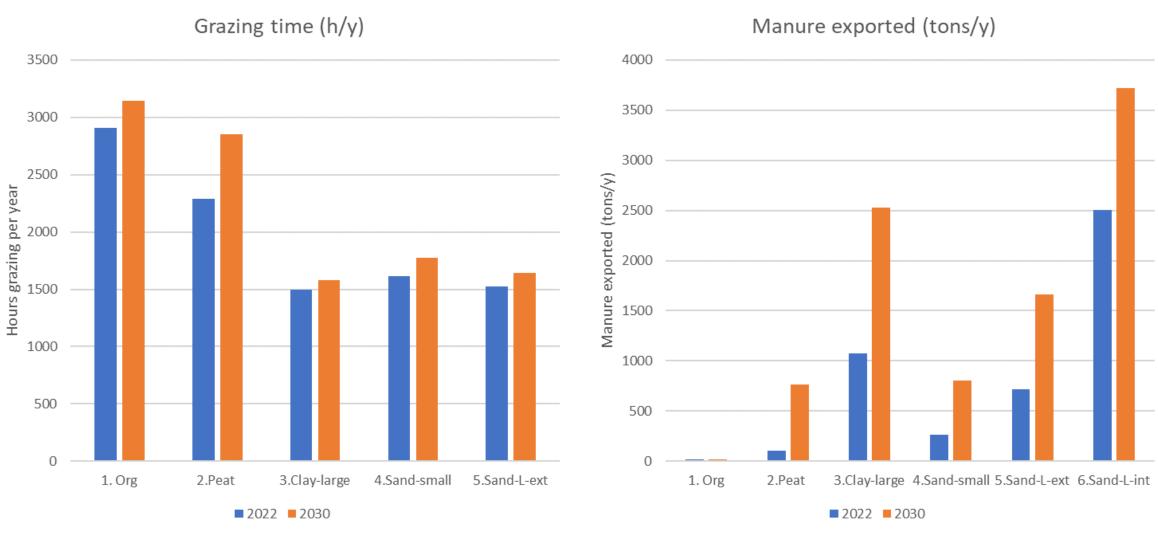
^{**} Schils et al. 2020. Disentangling genetic and non-genetic components of yield trends of Dutch forage crops in the Netherlands. Field Crops Research; vol. 249.

Results - grass yield

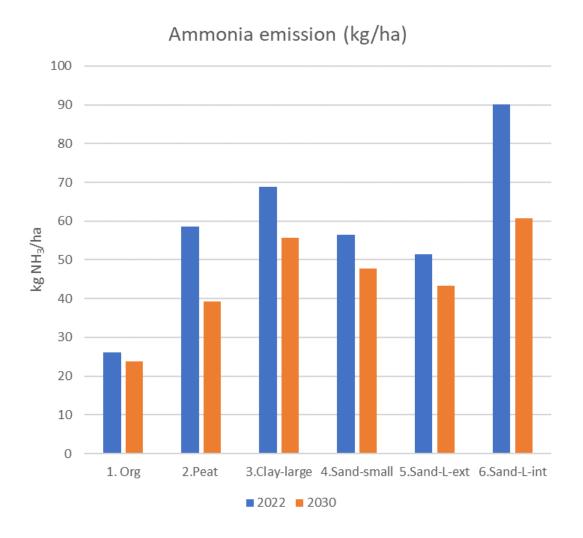


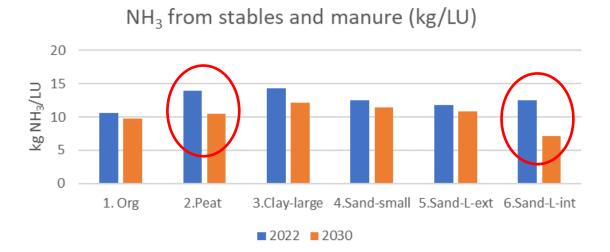

- Less N fertilization (loss of derogation, total N restrictions)
- Precipitation deficit in spring
- + Earlier growth, grazing and mowing (dry, warm spring)
- + Higher groundwater table on peatland
- + Increase in irrigation
- + Replacement of animal manure with fertilizer with higher nitrogen utilization
- + Genetic advancement

Results - maize yield

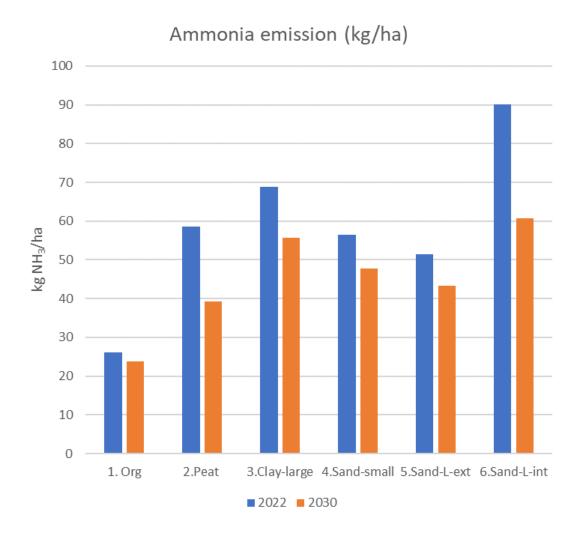


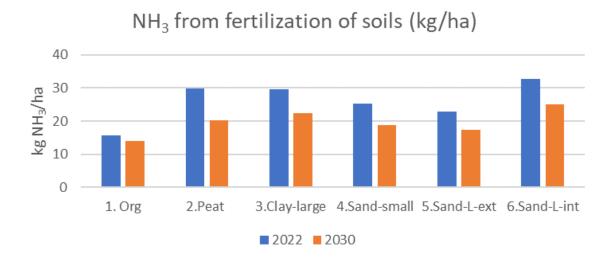
Maize yield (kg DM/ha)




Results - grazing time & manure export

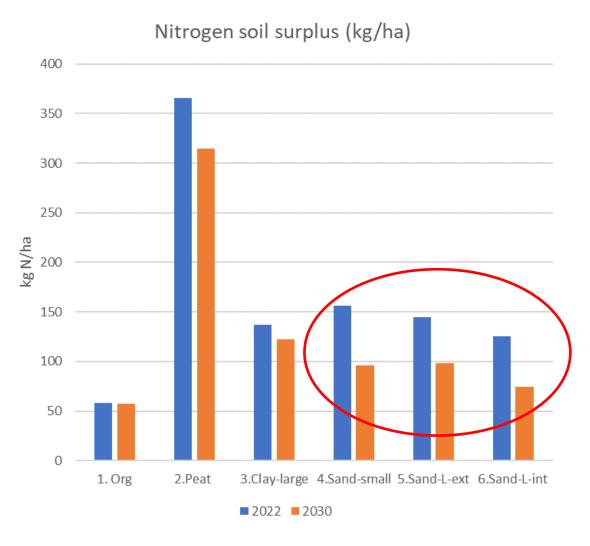
Results - ammonia emission





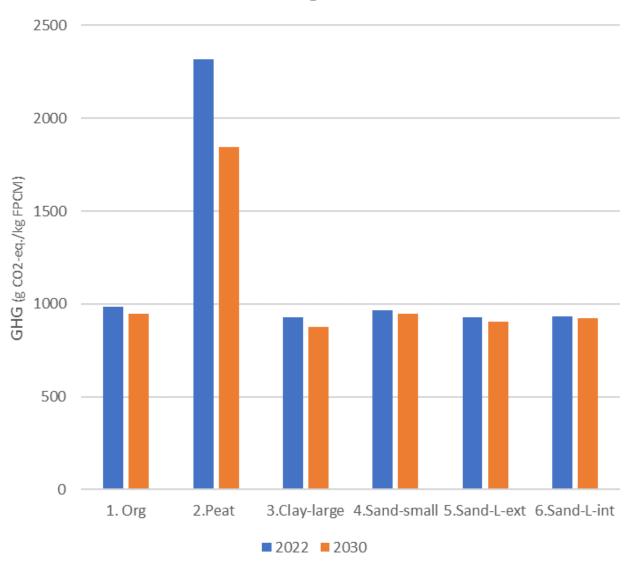
- Lower crude protein of the feed ration (agreement)
- More grazing (dry, warm spring)
- Low-emission barn (farm 6)

Results - ammonia emission



- Less manure N due to loss of derogation
- Less synthetic fertilizer N due to total N restrictions
- More grazing

Results – nitrogen soil surplus



- Less manure N due to loss of derogation
- Less synthetic fertilizer N due to total N restrictions
- Improved nutrient use efficiency, due to shift to synthetic fertilizer and genetic improvement
- Share of maize land (increase in maize yield)

Results – greenhouse gas (GHG) emissions

- Higher groundwater table peat soil
- Various, e.g.:
 - Higher milk yield per cow
 - Less N2O from fertilization
 - Less protein in concentrates

Conclusions

- Preliminary results of effects of policy measures, productivity trends and climate change towards 2030
 - Large reduction in ammonia emission and N soil surplus
 - Small reduction in greenhouse gas emissions (except farm on peat soil)
- Uncertainty: CP goal (160 g CP), unpredictability of the weather
- Manure surpluses lead to severe economic effects (not considered)
- What is next: explore effects of alternative development pathways for the 6 dairy farms

Thank you!

Marion.deVries@wur.nl

Farm characteristics (model input)

	1. Org		2.Peat		3.Clay-large		4.Sand-small		5.Sand-L-ext		6.Sand-L-int	
Scenario	2022	2030	2022	2030	2022	2030	2022	2030	2022	2030	2022	2030
Herd size (cows)	90	102	70	82	170	192	70	79	140	158	175	198
Milk yield (kg/cow)	6650	7210	7950	8230	8900	9460	8650	9210	9250	9810	9400	9960
Area (ha)	73	87	45	52	90	105	39	46	80	94	59	69
Intensity (kg milk /ha)	8200	8200	12500	12500	16800	16800	15400	15400	16100	16100	28000	28000
Concentrates (kg/cow)	1600	1850	2750	2900	3150	3550	2700	3300	3000	3350	3200	3550
CP feed ration (g/kg DM)	166	161	185	160	174	160	162	155	164	154	155	154

