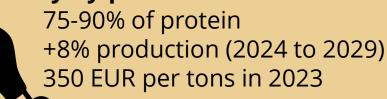


Cecilia Fanizza, A. Trocino, V. Stejskal, M. Prokèšovà, M. Zare, H. Quang Tran, F. Brambilla, G. Xiccato, F. Bordignon

Jihočeská univerzita v Českých Budějovicích University of South Bohemia in České Budějovice

Background

6.8 million tons in 2020 Land-based systems


Cultural habits
Taste perceptions
Poor marketing
Farming practice concerns
Competition with alternatives

Fast growth
Efficient feed conversion ratio
Adaptable to different conditions
High stocking densities
Fillets with high nutritive value

Processed Animal Proteins (PAPs)

Poultry By-product Meal

Hydrolysed Feather Meal

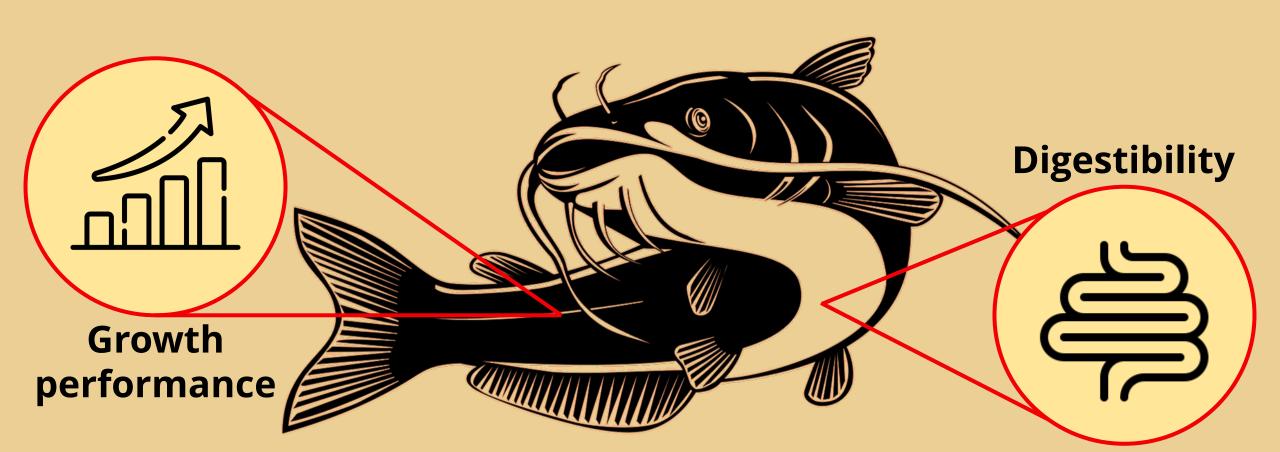
80-85% of protein +9% production (2024 to 2029) 165 EUR per tons in 2023

Dry-blood Meal

90-95% of protein +3% production (2024 to 2029) 265 EUR per tons in 2023 ▲

MINIMISE THE AMOUNT OF FISHMEAL

PRESERVE PRODUCTION EFFICIENCY


INCREASE ECONOMIC AND ENVIRONMENTAL SUSTAINABILITY

Aim of the study

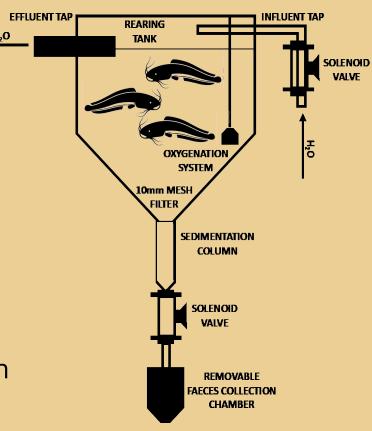
Effects of 4 commercially available, market-consistent, and price-stable practical diets

formulated with decreasing levels of fishmeal (9 to 1 %) and increasing levels of blends of poultry PAPs (23 to 39 %)

for African catfish (*Clarias gariepinus*) reared in controlled RAS conditions

Fish rearing conditions

Fakulta rybářství a ochrany vod Faculty of Fisheries and Protection of Waters



600 catfish

(116 ± 16 g)
in **12 RAS tanks** ←
(50 fish per tank)
equipped with Guelph
system

84-day trial

(+1 week of adaptation) 3 tanks per diet fed to visual apparent satiation

Water parameters and mortality were checked daily

Experimental diets

Commercial diets were formulated according to the specifications and requirements of the aquafeed company **NaturAlleva** (VRM s.r.l., Verona, Italy), ensuring industry standards for **nutritional balance**, **ingredient quality**, and **regulatory compliance**

	9FM-23PAP	5FM-28PAP	9FM-31PAP	1FM-39PAP
Fishmeal from by-products (CP 66% DM)	9.1	4.6	9.2	1.0
Poultry by-product meal (CP 64% DM)	4.5	9.9	14.2	16.5
Hydrolysed feather meal (CP 85% DM)	9.0	9.0	12.7	13.6
Poultry dry-blood meal (CP 90% DM)	9.1	9.1	4.6	9.1
Total PAPs	22.7	28.0	31.4	39.2
Soybean meal	14.5	11.6	7.4	0
Rapeseed meal	13.6	13.6	13.7	18.1
Wheat meal	16.3	18.1	19.1	22.7
Corn gluten meal	4.2	4.4	0	0
Pea meal	9.0	9.0	9.1	8.5
Total vegetable protein meals	57.5	56.6	49.2	49.3
Other ingredients*	10.8	10.8	10.2	10.5

^{*}Other ingredients: whey protein concentrate; hydrolysed fish protein; rapeseed vegetable oil; fish oil; DL-methionine; emusilfier (E484); vitamin and mineral premix; vitamin C

ISONITROGENOUS (CP: 44 % DM) **ISOLIPIDIC** (EE: 12 % DM) **ISOENERGETIC** (gross energy: 16.5 MJ kg⁻¹)

Digestibility and growth indicators

Digestibility

Faecal samples collected 2 times x day

12 pools chemically analysed (3 tanks x 4 diets)

ADC of protein and lipids Cho et al., 1982

Fibre as indicator Krontveit et al., 2014

Economic analysis

Feed Cost to produce 1 kg of fish (€ kg fish⁻¹)_{Fanizza et al., 2023}

Economic Conversion Ratio (ECR, € kg fish⁻¹)_{Martínez-Llorens et al., 2007}

Economic Profit Index (EPI, € fish⁻¹)_{Martínez-Llorens et al., 2007}

Growth performance

in vivo recordings

Survival (%)

Fulton's condition factor (Kc)

Specific Growth Rate (SGR, % day⁻¹)

Feed Conversion Ratio (FCR)

Slaughtering recordings

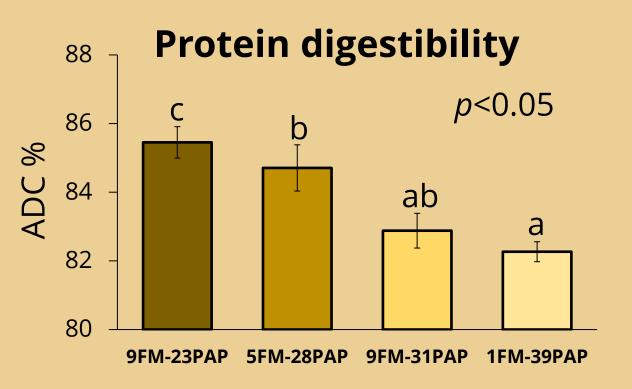
Intraperitoneal fat index (%)

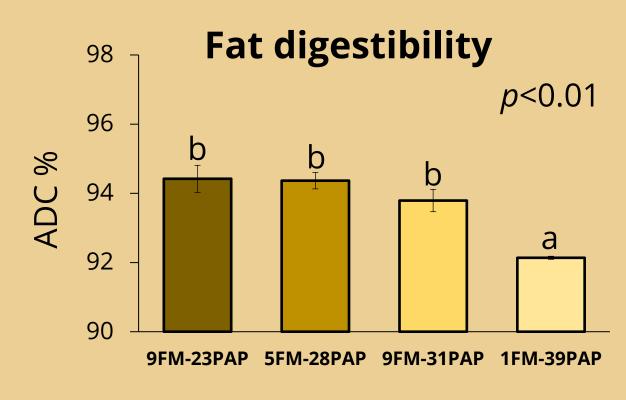
Gonadosomatic index (%)

Hepatosomatic index (%)

Spleen somatic index (%)

Viscerosomatic index (%)


Carcass yield (%)


Head incidence (%)

Fillet with skin yield (%)

Fillet without skin yield (%)

Digestibility

Diet 1FM-39PAP resulted in the lowest protein and fat digestibility

fluctuations in inherent content of feathers, connective tissue, and skin

processing method and long exposure to high temperatures

high content of rapeseed meal

Growth performance

	9FM-23PAP	5FM-28PAP	9FM-31PAP	1FM-39PAP	<i>p</i> -value			
in vivo recordings								
Survival, %	94.5ª	96.8 ^b	94.3ª	94.6a	<0.001			
Fulton's condition factor	0.87 ^b	0.86 ^b	0.84 ^{ab}	0.83 ^a	<0.001			
Specific growth rate, % d-1	3.23 ^c	3.18 ^{bc}	3.00 ^b	2.69 ^a	<0.001			
Feed conversion ratio	1.14 ^a	1.06 ^a	1.14 ^a	1.34 ^b	<0.001			
slaughtering recordings								
Somatic indexes, %	n.s.							
Carcass yield, %	91.4	90.3	90.8	90.7	n.s.			
Head incidence, %	26.3	27.2	26.8	27.7	n.s.			
Fillet yield (with skin), %	47.8 ^b	46.3 ^{ab}	46.9 ^{ab}	45.5 ^a	0.03			
Fillet yield (without skin), %	39.8	38.8	39.4	38.0	n.s.			

Diet 1FM-39PAP did not adequately support productive performance

low palatability of diets with high inclusion of poultry and feather meals

low inclusion of fishmeal

feather meal lacks essential amino acids due to poor keratin hydrolysis process

Economic analysis

	9FM-23PAP	5FM-28PAP	9FM-31PAP	1FM-39PAP
Feed production cost EUR kg ⁻¹	0.66	0.64 -3% vs. 9FM-23PAP	0.65 -2% vs. 9FM-23PAP	0.58 -12% vs. 9FM-23PAP
Feed cost to produce 1 kg of fish EUR kg ⁻¹	0.75	0.68 -9% vs. 9FM-23PAP	0.57 -24% vs. 9FM-23PAP	0.78 +4% vs. 9FM-23PAP
Economic Conversion Ratio-ECR EUR kg fish ⁻¹	1.28	1.18 -8% vs. 9FM-23PAP	1.46 +14% vs. 9FM-23PAP	1.78 +39% vs. 9FM-23PAP
Economic Profit Index-EPI EUR fish ⁻¹	1.45	1.29 -11% vs. 9FM-23PAP	1.27 -12% vs. 9FM-23PAP	1.18 -19% vs. 9FM-23PAP

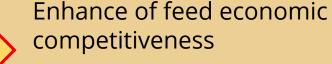
Strategic Ingredients Assessment

Fishmeal of min. 5% Poultry meal up to 10% Feather meal up to 9%

Improvement of feed economic competitiveness

Favourable growth performance and diet digestibility

Blood meal from 9 to 5% Poultry meal ≥14% Feather meal ≥ 13%


Lower cost for feed production

Worse ECR and EPI

Impairments of growth performance and digestibility

Fishmeal from 9 to 5%
Blood meal of 9%
Poultry and feather meals not above 10%

Favourable growth and digestibility performance

Conclusions

Low dietary inclusion of fishmeal (1%) and a high inclusion of poultry by-product meal (≥14%) and hydrolysed feather meal (≥13%) did not support adequately performance of African catfish reared in a RAS system

A diet with a medium inclusion of fishmeal (5%) and medium inclusion of a blend of PAPs (28%) resulted technically and economically profitable, assuring high fish survival rate and good growth performance

Thanks for your attention

cecilia.fanizza@phd.unipd.it cfanizz@upvnet.upv.es

Statistical analysis

All data were checked for normality through a Shapiro-Wilk test

- Data of catfish biometry were submitted to ANOVA (PROC MIXED, sas 2013)
- Fish survival was analysed using PROC CATMOD, SAS 2013
- Diet digestibility, SGR and FCR and slaughter results were submitted to ANOVA (PROC GLM, SAS 2013)

The Bonferroni test was used to compare least square means

Differences among least square means with p<0.05 were assumed to be statistically significant

