

Environmental impact of the inclusion of alternative raw materials in diets for gilthead seabream

Alternative protein meals in aquafeeds

Vegetable proteins

Pea meal Rapeseed meal Sunflower meal

Rendered by-products

Poultry/pig by-product meal Hydrolyzed feather meal Blood meal (pig, poultry)

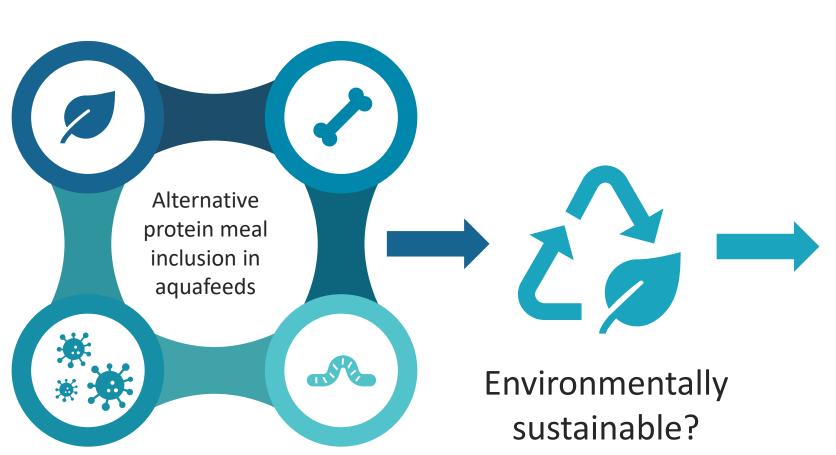
Terrestrial/marine intensive cultures

Bacterial proteins

Algae meals

Insect meals

Black soldier fly larvae Mealworm Cricket



Environmental impact of aquafeeds including alternative meals

FEW STUDIES

Maiolo et al., 2020; 2021 McKuin et al., 2023 Berton et al., 2023 Bordignon et al., 2023; 2024

about the impact of ingredient production from research trials and production plants

FACTORS from public databases related to

alternative ingredients

Aims

To evaluate the effects of the inclusion of two alternative protein meals in replacement of fishmeal and vegetable proteins in diets for seabream:

Iberian pig by-product meal

1

10% of total Spanish pig production

Organic production → by-product meals interesting ingredients for organic aquafeeds

Microalgae meal (I. galbana)

High digestibility in seabream (Palmegiano et al., 2009) Rich in bioactive compounds (Bonfanti et al., 2018)

Fish growth performance and feed conversion

- Environmental footprint of the production of the <u>alternative protein meals</u>
- **Environmental footprint of the <u>feeds</u>** including the alternative meals at different levels

Experimental diets

Ingredients (alternative meals) (g kg⁻¹ as fed)

The care had the means / 18 kg as rear					
	FM100	FM25	FM10	FM0	FM0+
Fishmeal	590	150	60	-	-
Wheat meal	259	56	14	-	-
Soybean meal	-	171	206	220	206
Pea meal	-	101	122	129	111
Sunflower meal	-	101	122	129	111
Iberian pig meal	-	237	288	328	328
Microalgae (1. galbana)	-	-	-	-	50
Others*	151	184	188	194	194

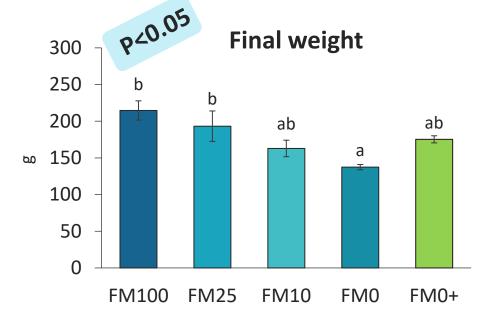
Proximate composition

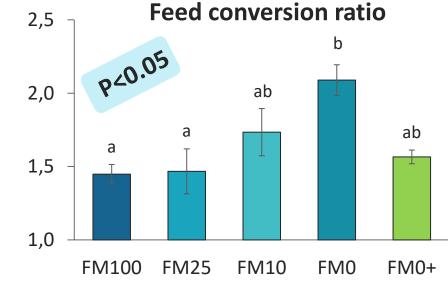
	FM100	FM25	FM10	FM0	FM0+
Fat, %DM	19.9	19.1	18.7	18.8	19.5
Protein, %DM	47.2	46.5	47.1	47.0	46.0
Gross energy (MJ kg ⁻¹)	21.8	23.3	23.3	23.7	23.5
Price (€/kg)	1.93	1.74	1.69	1.67	3.52

^{*}Other ingredients: **Fish oil** (45-100 g kg⁻¹), **Soybean meal** (41-96 g kg⁻¹), **DL-Methionine**, calcium phosphate, vitamin and mineral premix

Experimental trial and results

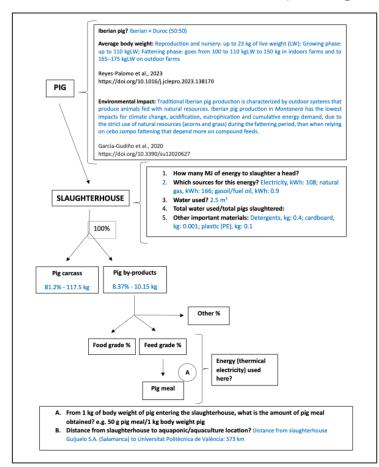
0.05	FM100	FM25	FM10	FM0	FM0+
Specific growth rate (% d ⁻¹)	1.4 ^c	1.2 ^{cb}	1.1 ^b	0.8ª	1.2 ^b
Feed intake (g 100 g fish ⁻¹ day ⁻¹)	1.8	1.6	1.7	1.7	1.7
Protein efficiency ratio	1.6 ^b	1.6 ^b	1.4 ^{ab}	1.1 ^a	1.5 ^b
Condition factor	2.1 ^c	1.9 ^{ab}	1.8 ^{ab}	1.7ª	1.9 ^b


Experimental trial setup:


360 seabream (64 ± 1.3 g)

- 15 RAS tanks (3 tanks/diet)
- 24 fish/tank
- Trial lasted 88 days
- Fed twice a day to satiation

@ Universitat Politècnica de València



Primary data: production of the alternative protein meals

Example of the interview sheets used to collect data about Iberian pig production (rearing and processing) and microalgae production

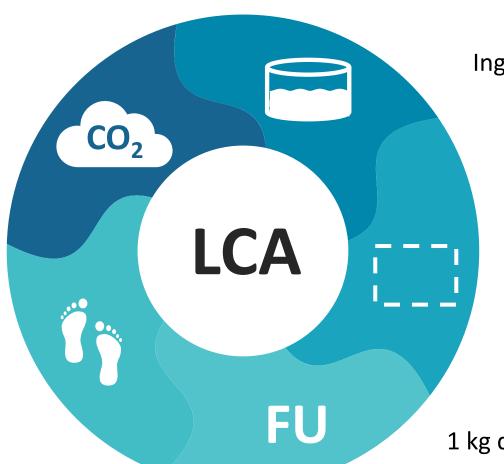
Production data per production cycle, as average (or per average day or per average year)

Item□	Unit¤	······Value¤	Notes
Water¤	Liters (or m ³)	3 m³¤	seawater¤
Nutrients added into the water	¤	¤	a
NaHCO3 ^{II}	kg¤	$0 \cdot g \cdot L^{-1} \square$	No needed¤
NaNO ₃ ¤	kg¤	12·mM¤	Fertilizer¤
K₂SO₄¤	kg¤	5.74·mM¤	Fertilizer¤
NaCl¤	kg¤	0 ¤	No needed¤
KH ₂ PO ₄ ¤	kg¤	0.37·mM¤	Fertilizer¤
MgSO₄¤	kg¤	0.2 mM¤	Fertilizer¤
EDTA·Na ₂ ·2H ₂ O¤	kg¤	12.1·µM¤	Fertilizer¤
others□	α	a	FeCl ₃ ·(0.01–0.06·mM), NaH ₂ PO ₄ · (0.08–0.43·mM), trace metals·(1·mL), vitamins·B1·(1°mg°L ⁻¹) and·B12· (0.05°mg°L ⁻¹)¤
a	¤	¤	a
CO ₂ for microalgae rearing	kg (or Liters or m³)¤	On-demand pure CO	at In total 2.5 kgCO2 /kg biomass¤
α	¤	¤	a
Flocculants (if use)	kg¤	0 ¤	NO, direct centrifugation
a	¤	¤	¤
Electricity, from grid	kWh¤	10·kWh/kg¤	Electricity
Electricity, from local photovoltaic plant	kWh¤	0 ¤	Not used¤
Heat¤	MJ¤	0 ¤	Not used¤
Heat source (natural gas, fuel,)	¤	¤	Not used¤
a	¤	a	¤
Harvested microalgae, wet	kg¤	10 kgwet/kg dry¤	¤
Harvested microalgae, dried	kg¤	3.8 t/year¤	The biomass is harvested and concentrated by centrifugation daily in continuous mode, then is freezedried to obtain dry biomass

Iberian pig meal

Production of microalgae (I. galbana)

LCA analysis



EMISSION FACTORS

Alternative protein meals: Calculated from collected primary data

Other ingredients in the feeds Databases: Ecoinvent, Agrobalyse and Agri-footprint

Comparative life cycle assessment

REFERENCE UNIT

Ingredient production (ingredients)
RAS farming system (feeds)

SYSTEM BOUNDARIES

From feed ingredient production to gilthead seabream (about 200 g) leaving the system

FUNCTIONAL UNITS

1 kg dry weight alternative ingredient1 kg increase of gilthead seabream (feeds)

Impact categories

Preliminary evaluation (presented here) considering only global warming potential

In progress:

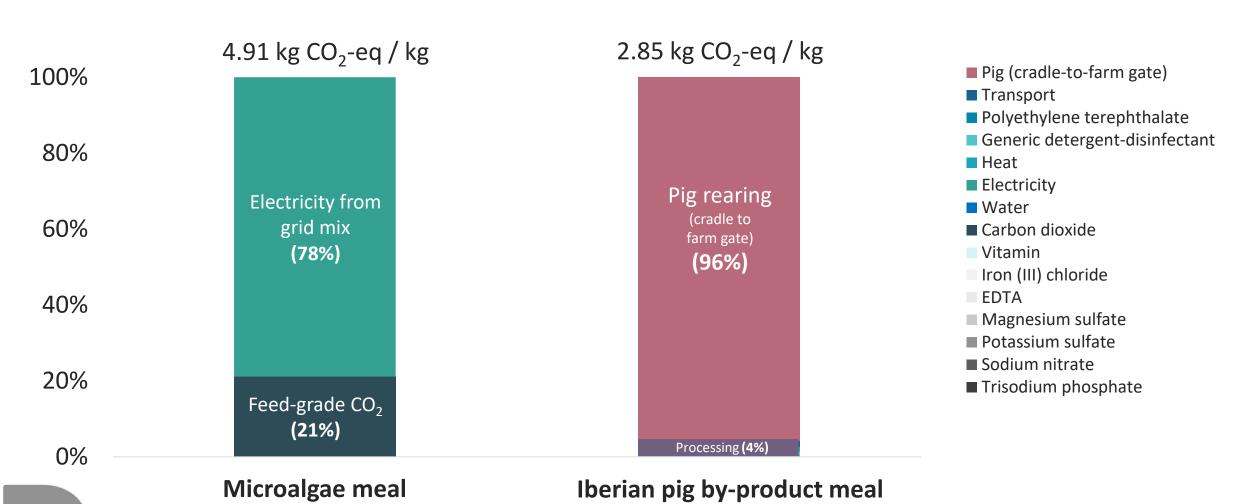
Comprehensive evaluation of the environmental footprint of the selected feeds considering other impact categories

EUTROPHICATION

POTENTIAL

ACIDIFICATION

POTENTIAL



Environmental impact of the alternative protein meals

Global warming potential computed for Iberian pig meal and microalgae (1 kg dry weight)

Environmental impact of the alternative protein meals

Comparison with other protein meals

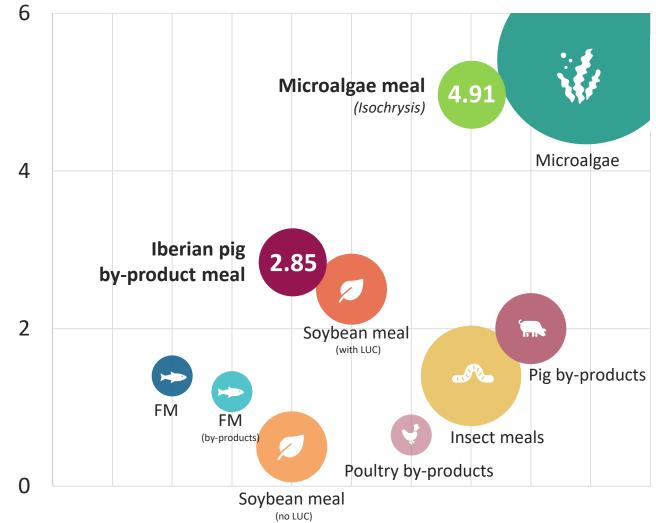
(Kg CO₂-eq / kg dry weight)

Fishmeal: 1.2-1.4 (Rustad, 2006)

Soybean meal: 0.4-3.0 (Dalgaard, 2008)

Poultry by-products: 0.6-0.8 (Campos et al., 2020)

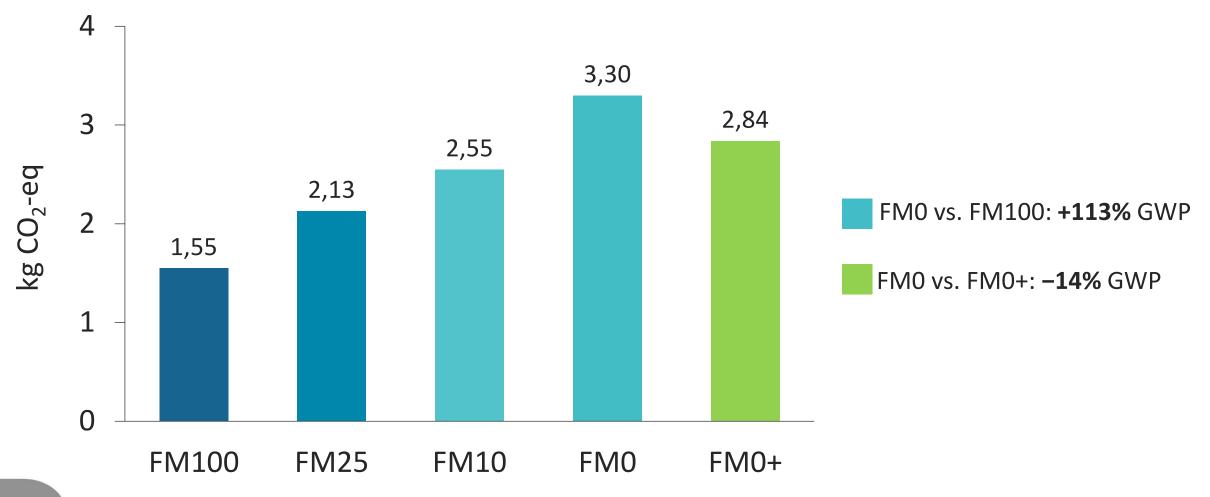
Pig by-products: 0.3-0.8 (Campos et al., 2020)



Insect meals: 0.5-1.96 (Campos et al., 2020; Bordignon et al., 2024)

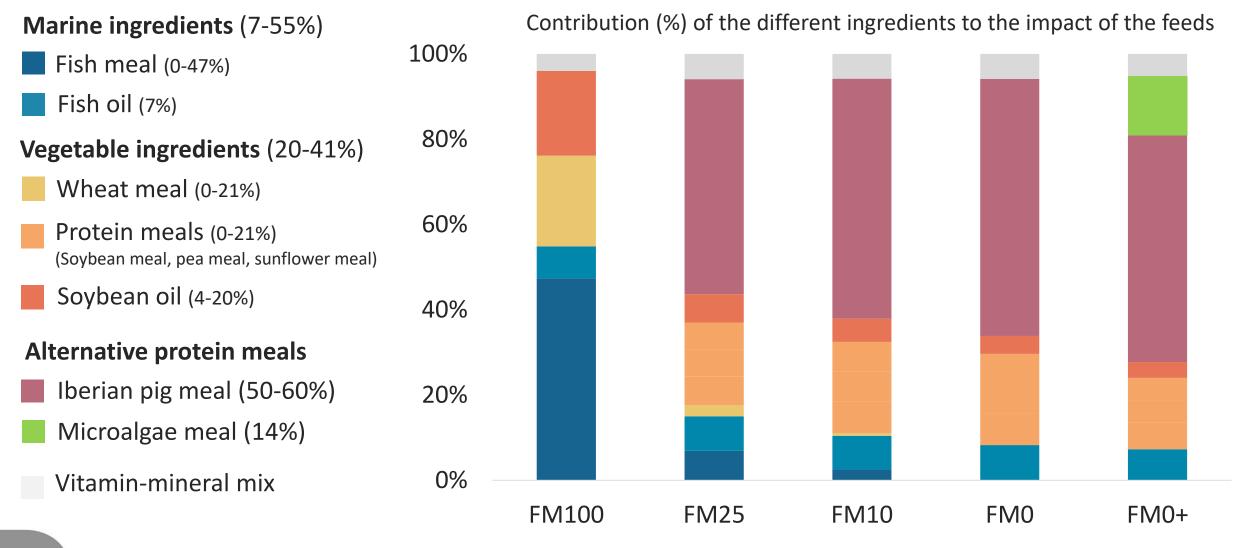
Microalgae spp.: 0.85-11.0 (Thielemann et al. 2021; Cuñha et al., 2024)

Global warming potentials (Kg CO₂-eq / kg dry weight)



Environmental impact of aquafeeds

Global warming potential (per 1 kg fish body weight gained) due to feed consumed



Hotspot analysis – Global warming potential

Main conclusions

Impact of alternative protein meals

New results about the footprint of alternative protein meals using primary data obtained from ingredient production processes

Iberian pig by-product meal (IPM)

- Total replacement of FM with vegetable proteins and IPM (33% inclusion) showed reduced performance both in terms of growth and environmental impact.
- The replacement of FM at 75% (24% IPM inclusion) could represent the best trade-off considering fish performance and global warming potential

3

Microalgae meal (1. galbana)

The inclusion of microalgae (5%) in a FM-free diet rich in IPM (33% inclusion) improved fish performance and reduced global warming potential

Next steps...

To complete the environmental footprint assessment of alternative protein meals and feeds including other impact categories (land use, water scarcity, eutrophication,...)

To evaluate the environmental consequences of fish meal replacement with alternative protein meals along the different production chains (consequential LCA)

Take a look!

Volume 563, Part 1, 30 January 2023, 738903

Fish oil substitution with vegetable oils in diets for greater amberjack (Seriola dumerili): A consequential life cycle assessment approach

Francesco Bordignon a, Angela Trocino b A E, Enrico Sturaro A, Silvia Martínez-Llorens c, Ana Tomas-Vidal ^c, Gerolamo Xiccato ^a, Marco Berton ^a

