

Effects of dietary supplementation of oregano essential oil to feedlot cattle on their meat quality and muscle fiber histomorphometry

¹Laboratory of Nutrition, Faculty of Veterinary Medicine, Aristotle University, 54124 Thessaloniki, Greece ²Laboratory of Animal Food Products Hygiene – Veterinary Public Health, School of Veterinary Medicine, Aristotle University 54124, Thessaloniki, Greece

³Laboratory of Pathology, Faculty of Veterinary Medicine, Aristotle University, 54124, Thessaloniki, Greece

*Corresponding author: Stella Dokou. E-mail: dokoustella@vet.auth.gr

- ⁴Laboratory of Anatomy, Histology and Embryology, School of Veterinary Medicine, Aristotle University 54124, Thessaloniki, Greece
- ⁵Laboratory of Animal Health Economics, School of Veterinary Medicine, Aristotle University 54124, Thessaloniki, Greece
- ⁶Laboratory of Animal Husbandry, Faculty of Veterinary Medicine, Aristotle University, 54124 Thessaloniki, Greece

Introduction

Oregano essential oil (OEO) and its potential uses has been the focus of scientific research across and beyond disciplines. The latter contributed significantly to the evolution of knowledge regarding its application particularly in livestock production with monogastrics being the dominant species of experimentation.

Objective

To investigate the role of dietary supplementation of encapsulated oregano essential oil in the quality of meat produced by Limousin bulls.

Materials & Methods

•Animals: Total 68 Limousin bulls (16 \pm 1.5 months old), allocated in two equal groups (n=34) with 5 pens each as replicates (4 pens with 7 bulls and 1 with 6 bulls)

- •Location: Feedlot unit, Veria, Greece
- •Diets/Groups:
 - Basal diet was offered in TMR form
 - Basal diet + Oregano Essential Oil (OEO) in microencapsulated form
 - > CON group: basal diet
 - > OREG group: basal diet + 50 mg OEO/kg DM

- Experiment duration: 90 days
 Sampling: 68 Steaks (13th rib)
- •Evaluated parameters:
 - Meat color, pH & texture
 - Meat chemical composition
 - Meat fatty acids & amino acids profile
 - Meat oxidative status
 - Muscle fiber minimum feret diameter
- •Statistical analysis: Independent samples T-test

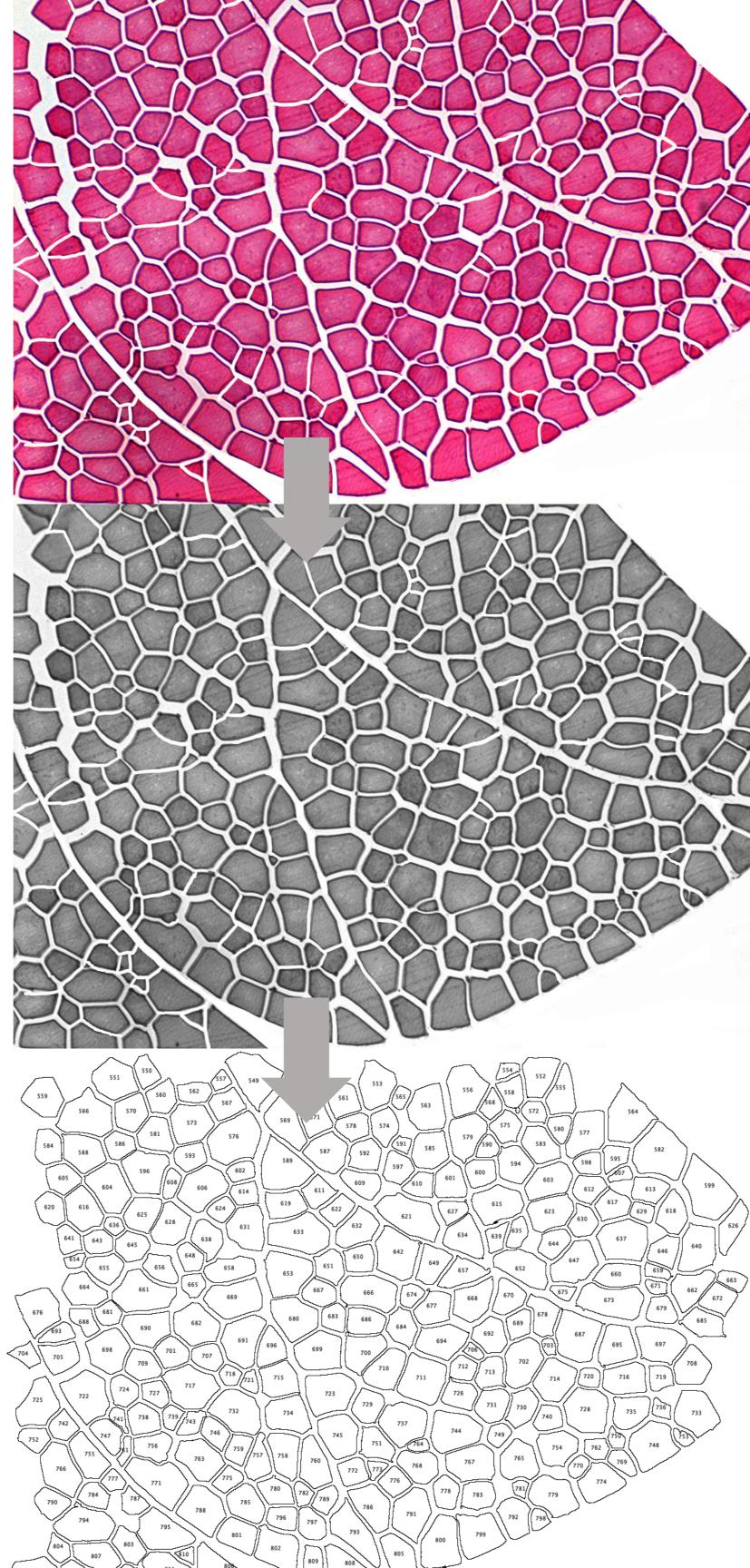

Results

Table 1. Evolution of effects of OEO dietary inclusion on pH, color and tenderness of Limousin cattle steaks.

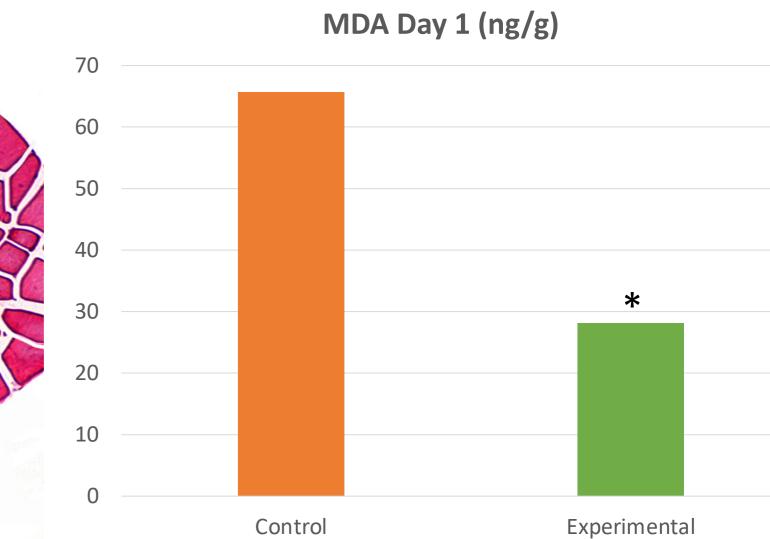

	Treatr			
	CON	OREG	SEM ²	P-value
рН				
Day 1	6.09	6.14	0.120	0.318
Day 15	6.32	6.29	0.141	0.671
L*				
Day 1	39.91	39.37	0.261	0.306
Day 15	43.04	43.34	0.334	0.657
a*				
Day 1	21.01	20.28	0.259	0.164
Day 15	18.96	19.22	0.180	0.467
b*				
Day 1	7.04	7.08	0.194	0.921
Day 15	9.56	10.17	0.271	0.264
Chroma				
Day 1	22.25	21.55	0.253	0.167
Day 15	21.30	21.80	0.264	0.344
Hue angle				
Day 1	18.60	19.34	0.548	0.509
Day 15	26.47	27.54	0.521	0.307

Table 2. Effect of OEO dietary inclusion on the fatty acid composition (%) of Limousin cattle steaks.

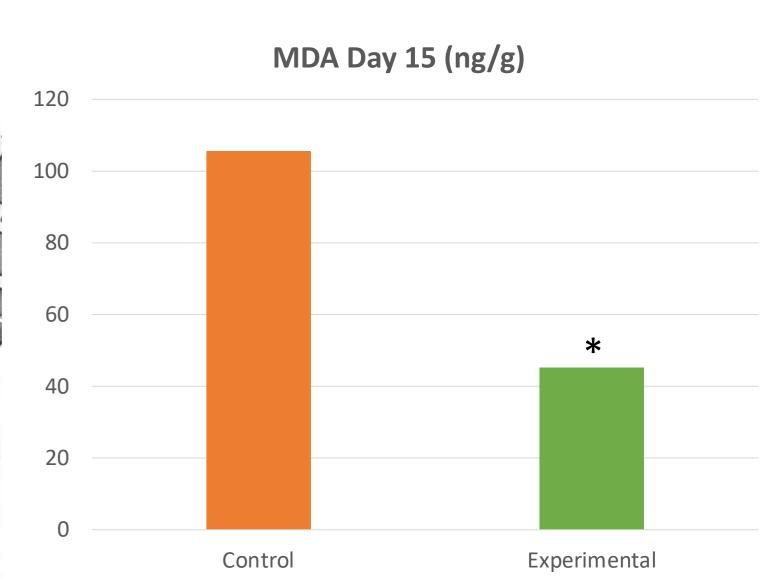

Limousin cattle steaks.								
	Treatments							
	CON	OREG	SEM ²	P-value				
Myristic acid (C14:0)	3.30	3.52	0.206	0.657				
Myristoleic acid (C14:1)	0.34	0.42	0.105	0.742				
Pentadecanoic acid (C15:0)	0.52	0.47	0.022	0.284				
Palmitoleic acid (C16:1)	3.09	3.64	0.220	0.239				
Heptadecanoic acid (C17:0)	1.23	0.88	0.099	0.058				
Cis-10-Heptadecenoic acid	0.55	0.41	0.042	0.107				
(C17:1)								
Elaidic acid (C18:1n9t)	3.88 ^a	1.84 ^b	0.531	0.029				
Oleic acid (C18:1n9c)	35.61	36.68	0.809	0.568				
Linoleic acid (C18:2n6c)	2.36	2.29	0.074	0.656				
Arachidic acid (C20:0)	0.10	0.09	0.031	0.954				
Cis-11-Eicosenoic (C20:1)	0.14	0.18	0.066	0.778				
Linolenic acid (C18:3n3)	0.07	0.16	0.053	0.476				
Palmitic acid (C16:0)	27.63	29.68	0.614	0.089				
Stearic acid (C18:0)	20.88	19.31	0.950	0.474				
SFA	53.76	54.13	1.010	0.877				
MUFA	43.66	43.27	0.978	0.868				
PUFA	2.53	2.61	0.102	0.771				

Figure 1. Microscopic image of the muscle in cross-section: 1) Hematoxylin-Eosin staining, magnification x10; 2) The same image, after digital processing, using the Image J software, showing the final form of the images used for histomorphometric analysis; 3) Particle analysis.

Figure 2. Lipid oxidation in meat: Malondialdehyde levels on day 1 post-slaughter.

Figure 3. Lipid oxidation in meat: Malondialdehyde levels on day 15 post-slaughter.

Conclusion:

Inclusion of 50 mg/kg DM OEO in the diet of bulls, improved meat oxidative stability and increased Elaidic acid concentration, enhancing overall meat quality.

ACKNOWLEDGEMENTS

The study was co-financed by the European Regional Development Fund and Greek National Funds through the Operational Program Central Macedonia 2021-2027 (project code: KMP6-0280294, MIS: 5136538, BQM).

EΣΠΑ

2021-2027

Βιώσιμη Ανάπτυξη για Όλους

Partnership Agreement
2021-2027

