The benefits of feeding *Himanthalia elongata* to dairy cattle on nitrogen utilisation and endproduct quality

Kayley Barnes¹, Tianhai Yan², Xianjiang Chen², Maria Hayes³, Sabrina Ormston⁴, Selina Kanathigoda⁴, Eric Newton⁴, Sokratis Stergiadis⁴, Jayne Woodside¹, Emanuele Armaforte⁵, Sharon Huws¹, Katerina Theodoridou¹

¹Queen's University Belfast

²Agri-Food and Bioscience Institute

³Teagasc Food Research Centre

⁴University of Reading

⁵CAFRE, Food Technology Centre

Seaweeds: what is the hype about?

- 3 main groups based on their dominant pigmentation
 - Phaeophyceae, Rhodophyceae, Chlorophayceae
- 10,000 seaweed species
- Marine and freshwater species
- Variation in habitats, water depths = different environmental conditions = phenotypical differences
- 3,000 bioactive compounds

Bioactive compound	Activity
Polysaccharides	Anti-thrombotic, anti-coagulant, anti-cancer, anti- proliferative, anti-viral, and anti-complementary agent, anti- inflammatory, prebiotics
Peptides and Amino Acids	Anti-inflammatory, anti-bacterial, anti-tumoral, antinociceptive; etc anti-oxidative, anti-inflammatory, anti-tumor, hepatoprotective and neuroprotective
Polyphenols and Phlorotannins	Antioxidants, anti-methanogenic
Pigments	Colour or pigment enhancement
Fatty Acids	Resilience to stress, alter Omega 6/3 ratio
Halogenated compounds	Antibacterial, anti-tumoral, anti-methanogenic

Himanthalia elongata

Brown temperate seaweed species

Grows in abundance around the UK&I coastlines

High phlorotannin content in comparison to some brown seaweeds:

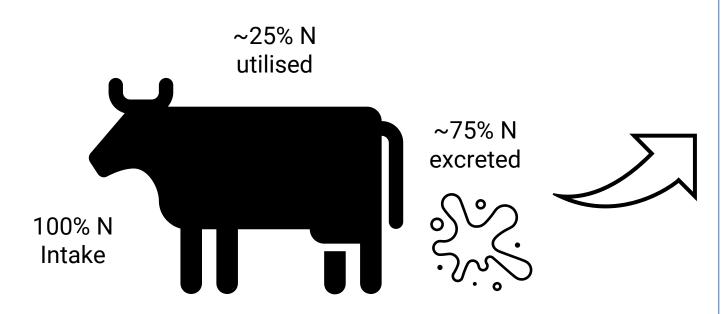
A. nodosum = 2.21

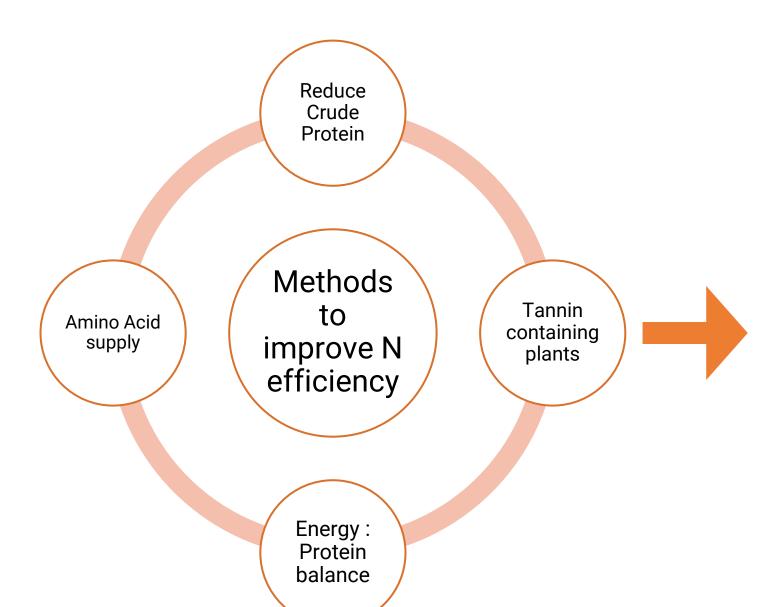
F. vesiculosus = 3.35

H. elongata = 5.53

H. elongata extract = 7.46

Research opportunity for provision to ruminants

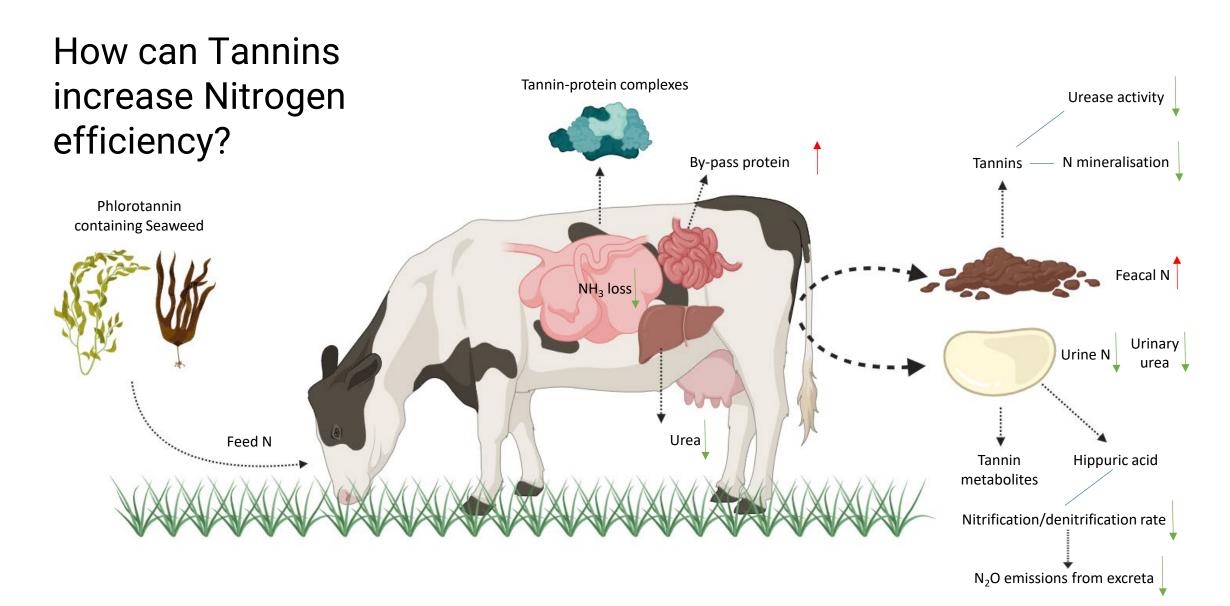

Positive outcome from *in-vitro* rumen fermentation experiments



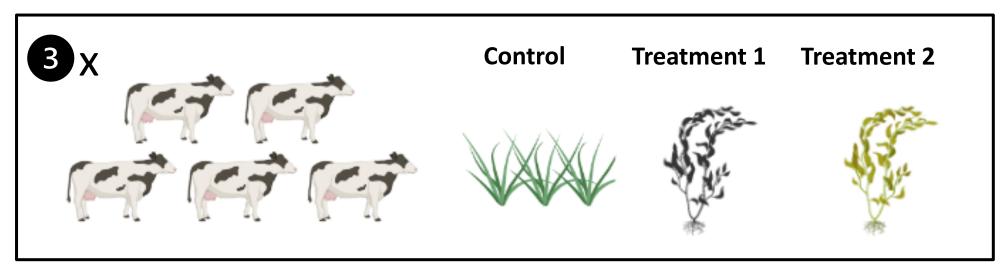

Nitrogen (N) Efficiency in ruminants

- Water pollution, gaseous N emissions and small particulate matter formation in the atmosphere
- Approx. 81% of anthropogenic N₂O emissions are attributed to the agricultural sector - 46% of which from ruminant excreta
- Urinary N is less stable than faecal N = more N loss

Condensed tannin containing terrestrial plants



Phlorotannin containing brown seaweeds

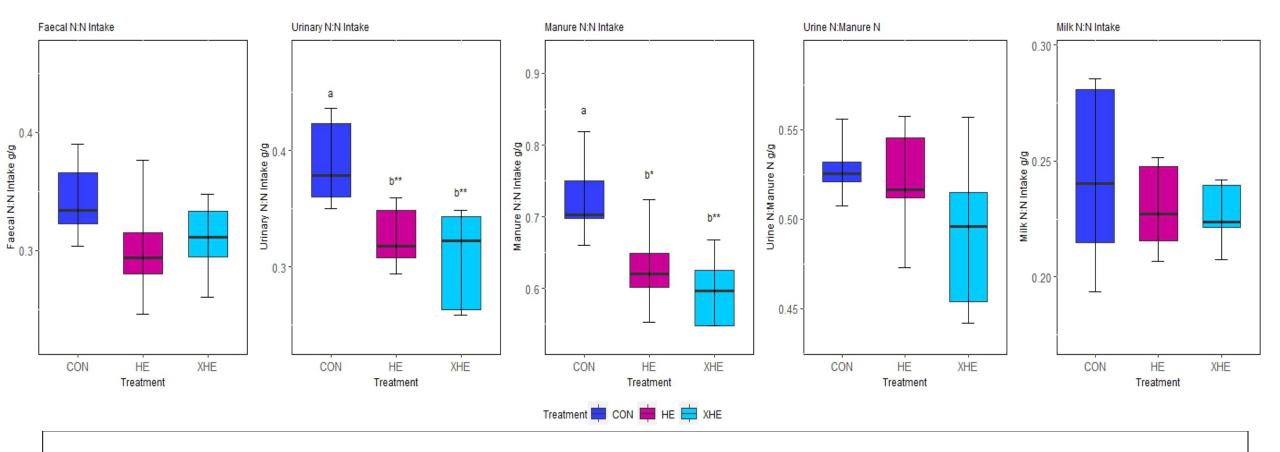


AFBI dairy cow study (3x3 Latin square)

- Feeding period = 21 days
- TMR diets with 60% grass silage and 40% concentrate (DM basis)
 - Control: Grass silage + concentrate
 - **Treatment 1:** grass silage + concentrate + 4% dried brown seaweed extract
 - Treatment 2: grass silage + concentrate + 4% dried brown seaweed

Measurements in digestibility units

- During the final 6 days of each 21d period, 9 cows (3 cows/diet) were selected and housed in individual stalls
 - ✓ Feed intake, LW, milk yield, milk composition, milk iodine content
 - ✓ Total collection of faeces and urine
 - ✓ Collection of rumen fluid and blood samples on d 21



DMI, Milk Yield & DM digestibility in the final 6 d digestibility measurements

ltem									
	Control	Whole seaweed	Seaweed Extract	SED	P-value				
Animal measurement									
DM intake (kg/d)	22.4 ^a	24.5 ^b	25.4 ^b	0.802	0.046				
Milk yield (kg/d)	27.4	27.5	28.6	1.72	0.742				
Digestibility									
DM digestibility (g/kg)	750	785	785	15.5	0.057				

- Increased DMI in both treatments = Significant increase in N intake
- Both treatments significantly reduced Manure N and Urinary N ratios against N intake (P < 0.05)
 - Showing increased N utilization and reduced N loss

SCHOOL OF BIOLOGICAL SCIENCES

UK lodin

J. Dairy Sci. 106:6880-6893 https://doi.org/10.3168/jds.2022-23074

© 2023, The Authors. Published by Elsevier Inc. and Fass Inc. on behalf of the American Dairy Science Association. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

 The UK is or countries to deficient pop Effect of dietary seaweed (Ascophyllum nodosum) supplementation on milk mineral concentrations, transfer efficiency, and hematological parameters in lactating Holstein cows

E. E. Newton, 10 K. Theodoridou, 2 M. Terré, 3 S. Huws, P. Ray, 4 C. K. Reynolds, 1 N. Prat, D. Sabrià, 3 and S. Stergiadis1* @

School of Agriculture, Policy and Development, University of Reading, Reading, RG6 6EU, United Kingdom

²Queen's University Belfast, Institute for Global Food Security, Belfast, BT9 5DL, United Kingdom

³Department of Ruminant Production, Institute de Recerca i Tecnologia Agroalimentàries, Caldes de Montbui, 08140, Spain

⁴The Nature Conservancy, Arlington, VA 22203 Deficiency ca muscle weakness, depression, hair

Contents lists available at ScienceDirect

Food Chemistry

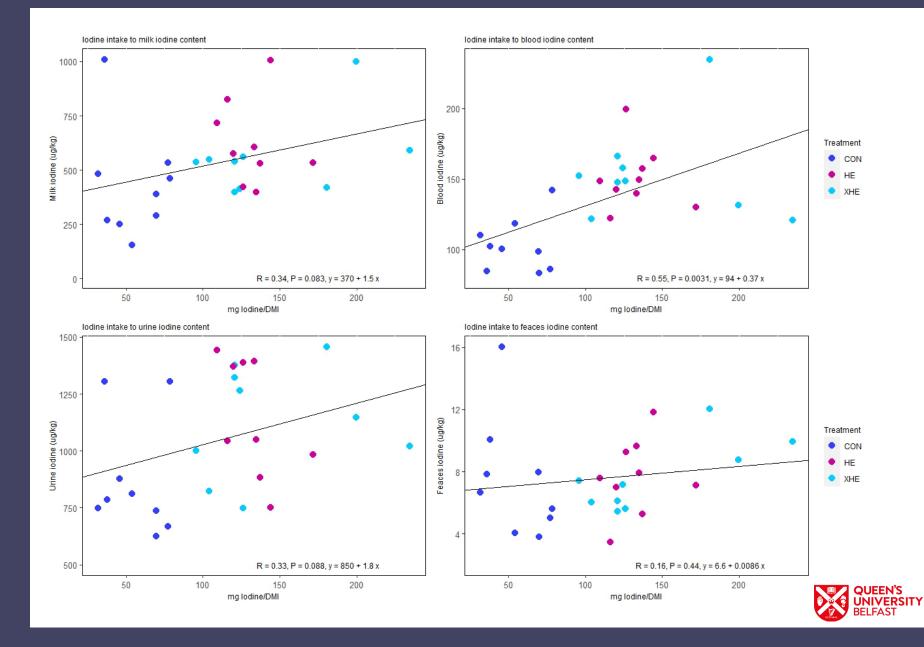
ournal homepage: www.elsevier.com/locate/foodchem

anitive

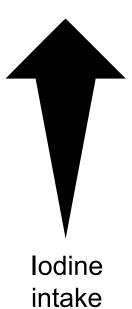
EFSA maximum recommendations for I

intake for age 18+ = 600 ug/d

in cows.


- Control milk = 3,759ml
- Seaweed milk = 331ml

Variation in macrominerals and trace elements in cows' retail milk and implications for consumers nutrition


Eric E. Newton a, Asta H. Petursdóttir b, Stephane Beauclercq a, James Clarke a, Natasa Desnica b, Sokratis Stergiadis 2,

* University of Reading, School of Agriculture, Policy and Development, Department of Animal Sciences, PO Box 237, Earley Gate, Reading RG6 6EU, United Kingdom

Matti, Vinlandsleið 12, Reykjavík 113, Joeland

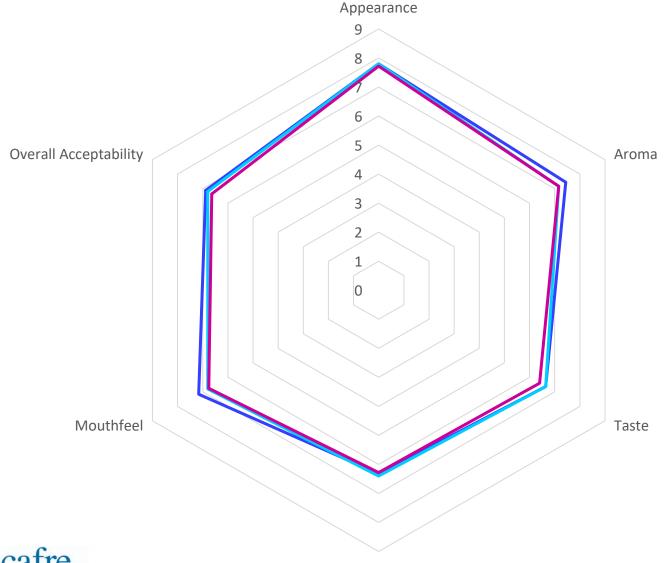
Increased milk, blood, urine and feacal iodine content

Milk fatty acid results

The effect of seaweed provision to milk fatty acid profile hasn't been previously investigated.

Small but positive changes in milk FA profile, especially EPA and DHA content

% of total	CON	HE	XHE	sd	SEM	P Value
EPA C20:5 n-3	0.055ª	0.061 ^b	0.061 ^b	0.007	0.001	0.016
DPA C22:5 n-3	0.085ª	0.095 ^b	0.090	0.011	0.002	0.048
DHA C22:6 n-3	0.004	0.004	0.004	0.001	0.000	0.293
FA groups (g/kg Total FA)						
SFA	75.766	75.184	75.623	1.790	0.246	0.623
MUFA	21.052	21.330	21.031	1.380	0.189	0.791
PUFA	3.181	3.486	3.344	0.470	0.065	0.205
n-3	0.840	0.899	0.883	0.128	0.018	0.457
n-6	1.543ª	1.694 ^b	1.629ab	0.180	0.025	0.043
n-3:n-6 ratio	0.543	0.528	0.541	0.351	0.005	0.412
n-6:n-3 ratio	1.848	1.899	1.859	0.125	0.017	0.459
EPA + DHA	0.059ª	0.065^{b}	0.066^{b}	0.007	0.001	0.012
trans FA	29.030	28.853	28.895	1.010	0.139	0.898



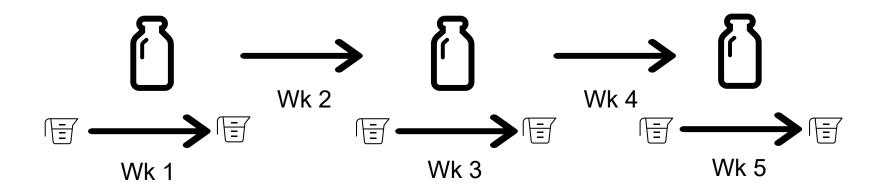
Consumer taste panel

Aftertaste

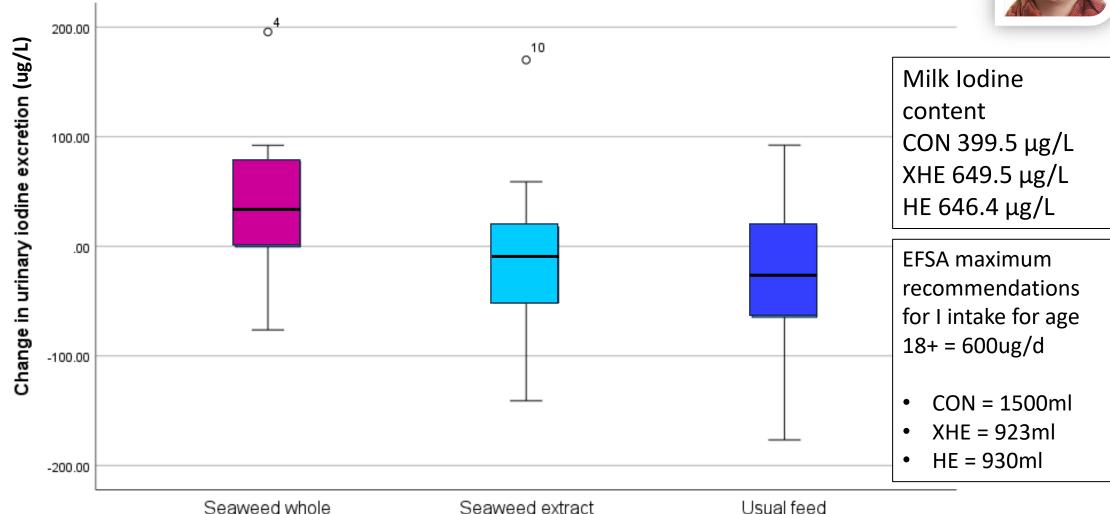
Control

Extract (XHE)

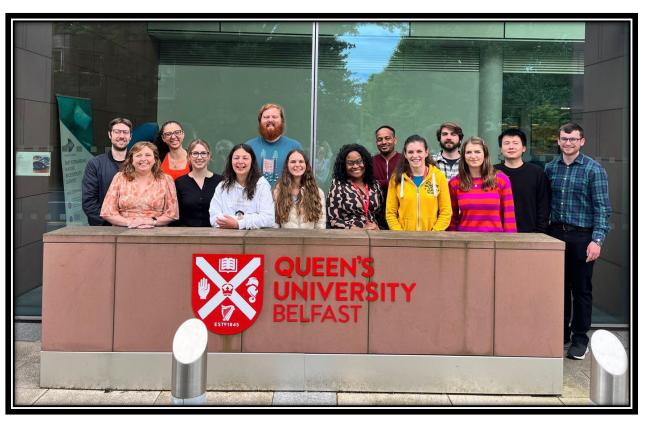
Whole Seaweed (HE)


Human intervention study

Collaboration with the Centre of Public Health


- Collected 60L/treatment after 20 days of seaweed provision in P3
 - Pasteurised, split into 500ml portions and frozen
- 9 participants
- 5 week study: consume 190ml milk/day

Preliminary results



Thank you to the Theodoridou and Huws Lab groups, AFBI Hillsborough Team, University of Reading, CAFRE and the QUB Centre of Public Health Team

