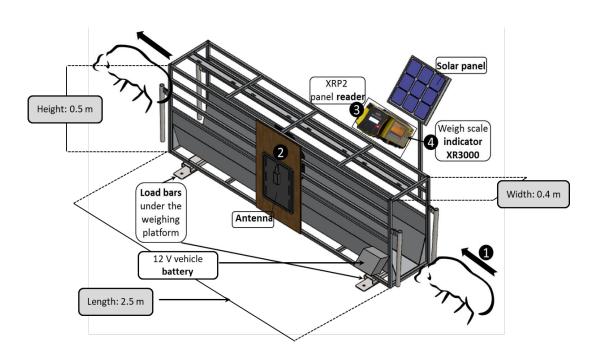


INRAO

Full-flock-full-pregnancy monitoring of liveweight progression in *Romane* meat ewes, using a walk-overweighing system in rangelands

I. Llach¹; G. Bonnafé²; C. Durand²; S. Douls²; I. Sanchez³; B. Cloez³; M. Lamarque ² & E. González-García¹

¹SELMET, INRAE, CIRAD, L'Institut Agro Montpellier SupAgro, Univ Montpellier, 34060 Montpellier, France


²INRAE UE321 La Fage, 12250 Saint-Jean-et-Saint-Paul, France

³MISTEA, INRAE, L'Institut Agro Montpellier SupAgro, Univ Montpellier, 34060 Montpellier, France

A Walk-over-Weighing (WoW) prototype: alternative to the Gold standard method (static scale)

- ✓ To **overcome constraints** affecting the frequent **weighing** of animals (time consuming, labour intensive, stress on both the animals and the operator), and
- ✓ To automatize this farm operation
- The animal **crosses voluntarily**, stimulated by the attraction zone
- The **antenna** reads its **ID** and sends it to the **reader** (XRP2)
- The reader saves the passage in a file and sends it to the indicator
- The **indicator** records the **ID**, **BW**, **date**, **time** of passage in a CSV file to be further interpreted and used for decision makings

Feasibility of using the system has been demonstrated in a large spectrum

of conditions

> Tested using different research questions

Computers and Electronics in Agriculture 153 (2018) 226-238

Contents lists available at ScienceDirect

Animal (2018), 12:6, pp 1174-1181 © The Animal Consortium 2017 doi:10.1017/S1751731117002609

Computers and Electronics in Agriculture

journal homepage: www.elsevier.com/locate/compag

An assessment of Walk-over-Weighing to estimate short-term individual forage intake in sheep

E. González-García^{1†}, P. de Oliveira Golini², P. Hassoun¹, F. Bocquier^{1,3}, D. Hazard⁴, L. A. González⁵, A. B. Ingham⁶, G. J. Bishop-Hurley⁶ and P. L. Greenwood^{7,8}

© 2021 American Dairy Science Association®. Published by Elsevier Inc. and Fass Inc. All rights reserved.

Measuring liveweight changes in lactating dairy ewes with an automated walk-over-weighing system

P. Hassoun, 1 J. M. Gautier, 4 and S. Parisot3

SELMET, INRAE, Montpellier SupAgro, CIRAD, Université Montpellier, 34000 Montpellier, France ²Animal Science Faculty, Universidade Federal Rural de Pernambuco, 52171-900 Recife, Pernambuco, Brazil ³INRAE UE321 La Fage, 12250 Roquefort-sur-Soulzon, France

⁴IDELE (Institut de l'Elevage), Sensors, Equipments, Facilities, 31321 Castanet-Tolosan, France

Original papers

A mobile and automated walk-over-weighing system for a close and remote monitoring of liveweight in sheep

E. González-García^{a,*}, M. Alhamada^a, J. Pradel^b, S. Douls^b, S. Parisot^b, F. Bocquier^c, J.B. Menassol^c, I. Llach^d, L.A. González^e

animal - open space 2 (2023) 100032

Contents lists available at ScienceDirect

animal - open space

journal homepage: www.elsevier.com/locate/anopes

Research article

Evaluating a Walk-over-Weighing system for the automatic monitoring of growth in postweaned Mérinos d'Arles ewe lambs under Mediterranean grazing conditions

E. Leroux a, I. Llach b, G. Besche c, J.-D. Guyonneau C, D. Montier C, P.-M. Bouquet d, I. Sanchez e, E. González-García b,*

doi:10.1017/S1751731117002609.

doi: 10.3168/jds.2020-19075.

doi.org/10.1016/j.anopes.2022.100032

https://patre.reussir.fr/actualites/un-couloir-de-pesee-automatique-valide-

Full-flock-full-pregnancy monitoring of liveweight progression in Romane meat ewes, using a walk-over-weighing system in rangelands

Automatic livestock weighing animals in the farm

- ✓ The ambition now is to use it in routine, whatever the system or animal category
- ✓ To strengthen individual monitoring without human intervention
- ✓ To develop Early Warning Systems (EWS) using liveweight (LW) changes as a proxy
- ✓ Besides, little is known about LW dynamics of females during pregnancy (key physiological stage), which is more critical under rangeland conditions

Objective

- To evaluate the feasibility of the long-term use of the WoW with the whole flock
- To establish a fine (daily) individual monitoring of the LW progress of all females during one sensitive full physiological stage period (e.g. full pregnancy)

- <u>Location</u>: The trial was carried out in the **rangeland of** *La Fage* INRAE experimental farm (43°54'54.52"N; 3°05'38.11"E; https://uef.isc.inrae.fr/
- Animals: all reproductive females from the Romane meat flock was used
- Guernesey
 Jersey
 Paris

 France

 France

 France

 France

 France

 France

 Mortgelier

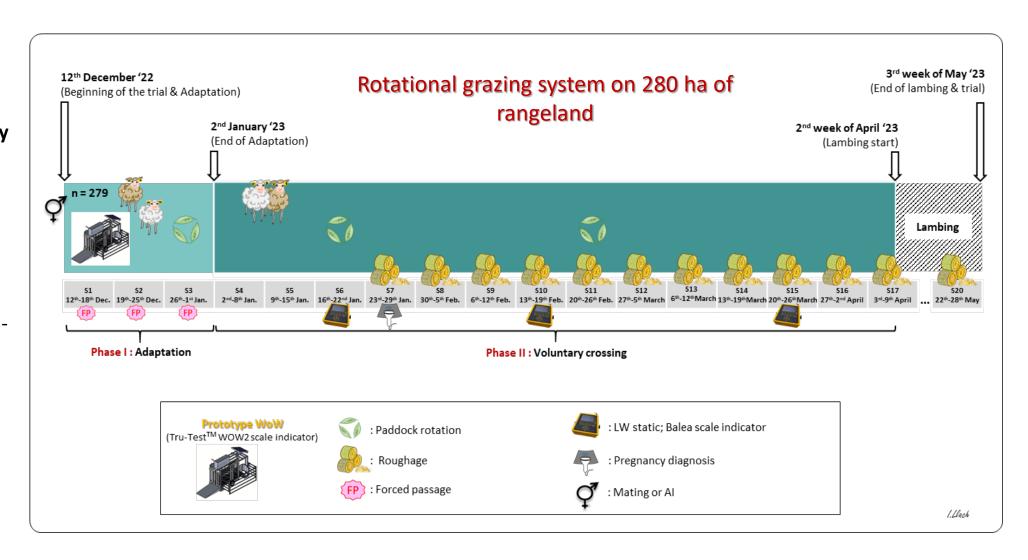
 Mortgelier

 Market

 Market

- Extensive (fully outdoor, «Caussse du Larzac» rangeland)
- Highly **prolific** breed; **natural suckling** system

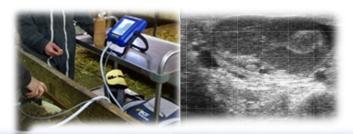
→ Including 279 ewes (77 primiparous, PRIM and 202 multiparous, MULT) of 1.6 and 4.4 years old and weighing 45.1 (±4.8 kg) and 53.1 (±8.9 kg), respectively


	PRIM	MULT	TOTAL
Number of ewes	77	202	279
Average age (y; mo)	1.6 (±0.0)	4.4 (±1.2)	3.6 (±1.6)
Average LW (kg)	45.1 (±4.80)	56.3 (±8.09)	53.1 (±8.90)

<u>Period</u>:

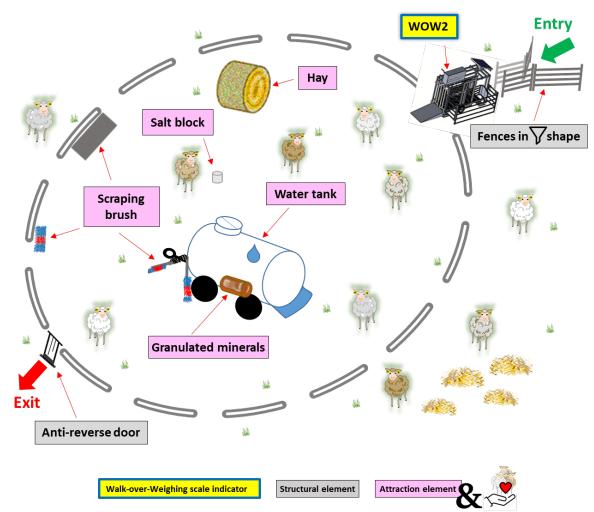
During one **full pregnancy** (from early pregnancy – December- to lambing – May-)

Experimental schedule:


Two successive **periods**(**Adaptation** –two weeks - and **Voluntary crossing** – until late April)

Pregnancy diagnosis:

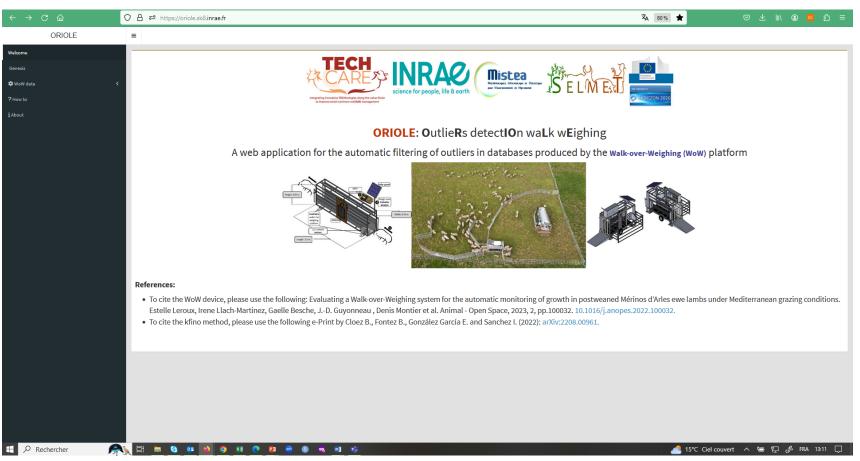
- Performed (Easi-Scan Linear portable scanner) at middle of the pregnancy (January 25th; ~72 ± 8 d)
- To determine success (ewes empty), litter size, to detect anomalies



INRAO

Monitored variables:

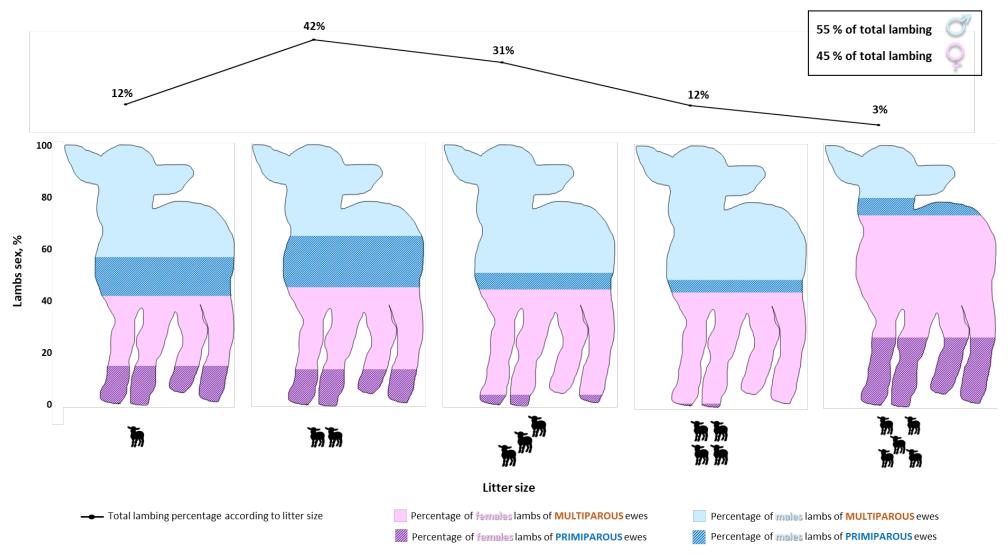
- o Flock:
 - Litter size at mid-pregnancy and at lambing
 - Lamb sex at lambing
 - Individual LW progress of ewes (with the WoW)
- Long-term feasibility of using the WoW in routine with the full flock
 - % ewes crossing voluntary the platform
 - Reliability of daily, individual LW data collected


1.Llae

Data processing:

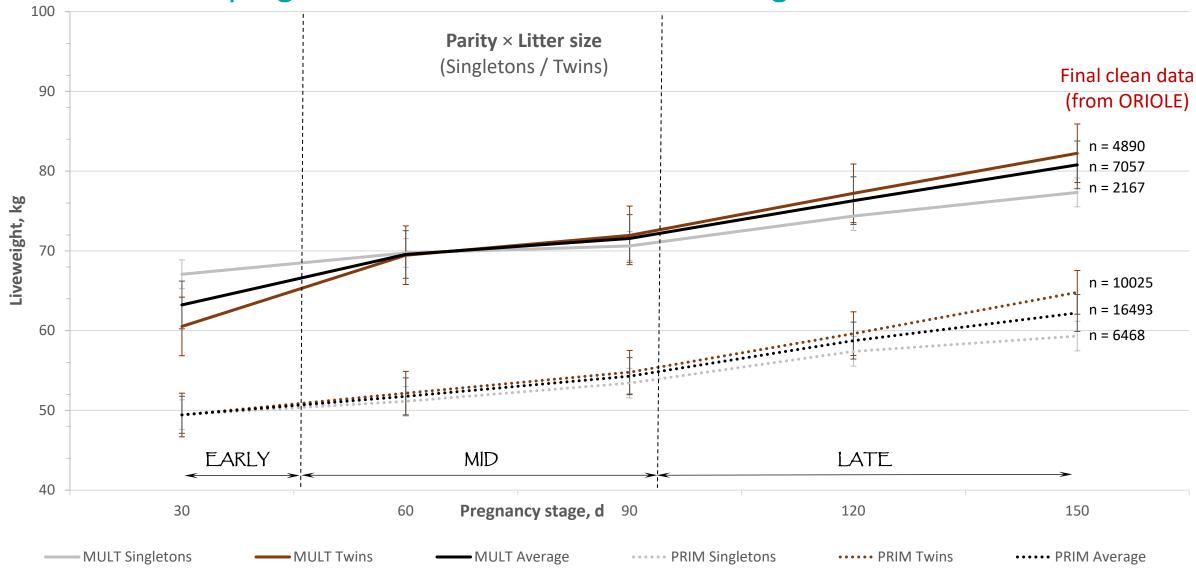
- Raw dataset outliers were automatically filtered by using our free web app ORIOLE (https://oriole.sk8.inrae.fr/)
 - The final (clean) dataset was contrasted with other relevant individual information available e.g. pregnancy diagnosis, litter size, lamb sex at lambing

R-Shiny (Automatic filtering outliers from raw database):ORIOLE: a web application for the automatic filtering of outliers was built and is online (https://oriole.sk8.inrae.fr/)



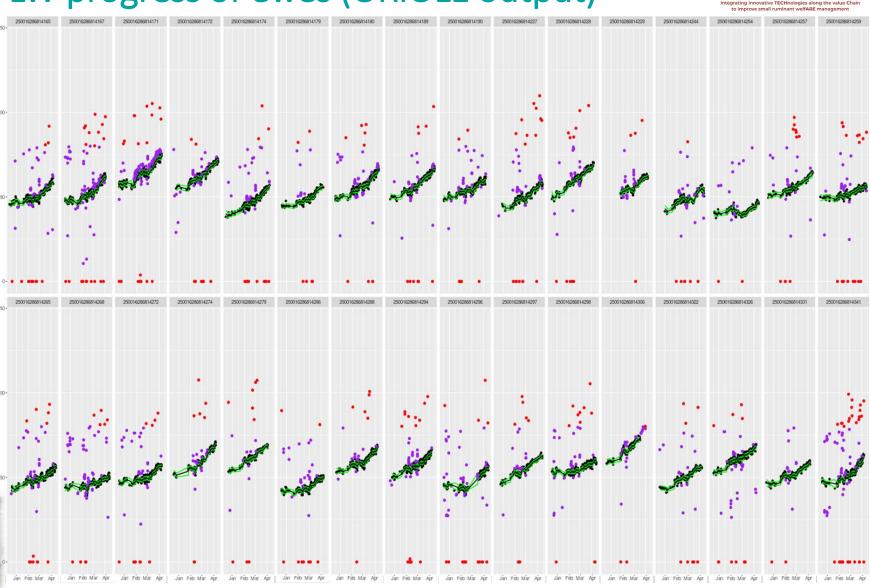
> Results: Pregnancy features (diagnosed vs. actual litter size at lambing)

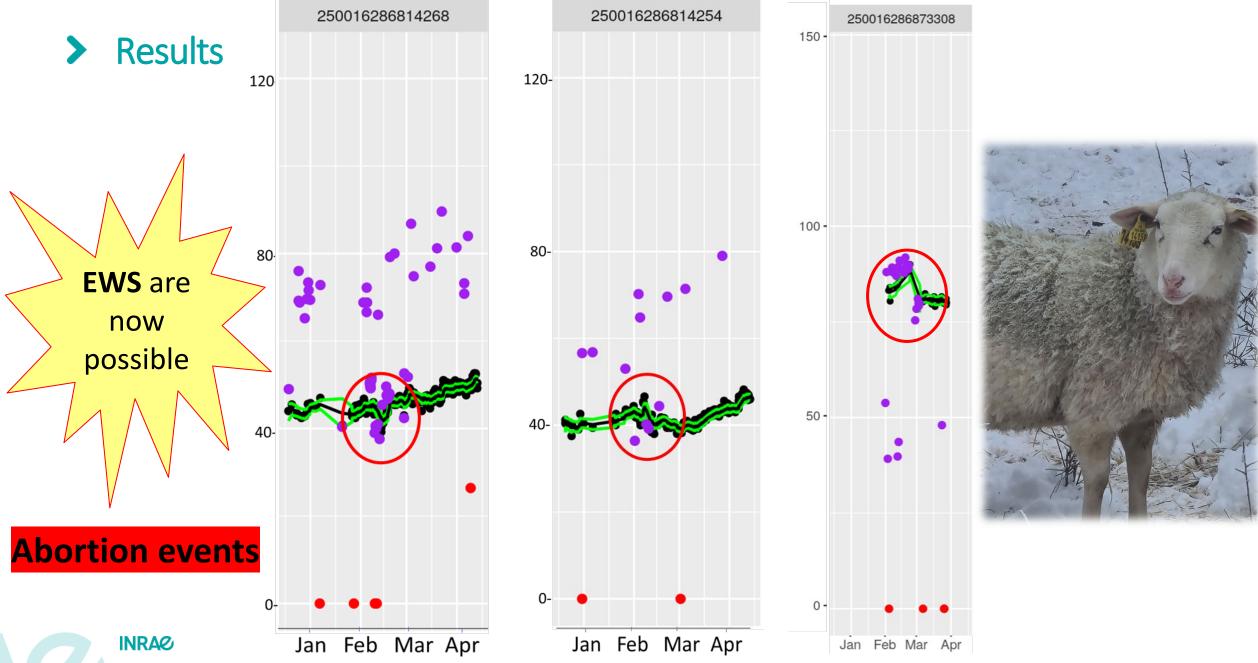
Item	Numbers of ewes	% of total ewes	Numbers of ewes	% as expected % Unexpected
Correct (LS = to predicted)	203	73	213	76
Correct (but aborted)	2	1		
Correct (empty ewes)	8	3		
Incorrect (Lower LS than predicted)	34	12	66	24
Incorrect (Higher LS than predicted)	23	8		
Incorrect (Diagnosed as empty, but LS= 1)	1	0,4		
Incorrect (Diagnosed as empty, but LS= 2)	5	2		
Incorrect (Diagnosed as empty, but LS= 3)	3	1		
Total of ewes	279	100	279	



> Results: Litter size and lamb sex, according to the ewes' parity

> Results: LW progress of PRIM & MULT ewes bearing SING or MULT litters




Results: Individual LW progress of ewes (ORIOLE output)

Daily based, individual monitoring and interpretations

> Conclusions

- ✓ Constant ewes' **LW progress** was **easily followed** by the WoW, making <u>possible</u> to detect anomalies *e.g.* abortions or individual presence/absence at a given precise date
- ✓ The infrastructure is ideal for making further deep, physiological interpretations such as <u>fetus growth rate</u> in function of litter size, lamb' sex, relationship with LW at lambing etc.
 - ✓ Also, for contributing to the development of early warning systems helping to decision makings during such <u>critical physiological stages</u> in the farm and beyond
 - ✓ The routine work still **in progress**, evaluating successive pregnancy periods and other physiological stages

This project has received funding from the European Union's Horizon 20202 research and innovation programme under grant agreement No. 862050

Integrating innovative TECHnologies along the value Chain to improve small ruminant welfARE management

INRAO

Full-flock-full-pregnancy monitoring of liveweight progression in Romane meat ewes, using a walk-over-weighing system in rangelands

I. Llach¹; G. Bonnafé²; C. Durand²; S. Douls²; I. Sanchez³; B. Cloez³; M. Lamarque ² &

E. González-García¹

Thank you!!

¹SELMET, INRAE, CIRAD, L'Institut Agro Montpellier SupAgro, Univ Montpellier, 34060 Montpellier, France

²INRAE UE321 La Fage, 12250 Saint-Jean-et-Saint-Paul, France ³MISTEA, INRAE, L'Institut Agro Montpellier SupAgro, Univ Montpellier, 34060 Montpellier, France

