

Session 66: The current and future role of pasture production systems in the mitigation of and adaptation to climate change impacts in livestock farming systems

Carbon footprint of sheep farms in FR Final results of the LIFE Green Sheep project

S. Throude, B. Rouillé, J.B. Dollé

*D'OÙ PROVIENNENT LES ÉMISSIONS DE GAZ À EFFET DE SERRE EN FRANCE ?

EAAP2024 - Florence, Italy

Secteurs émetteurs en 2021

Activités par secteur

Transports = 113 Mt éqCO₂

53 % - Voitures 27% - Poids lourds 14 % - Véhicules utilitaires

3 % – Avions (vols intérieurs)

3 % – Autres (maritime, deux roues, ferroviaire, fluvial)

Agriculture = 81 Mt éqCO2

49 % - Élevage 38 % - Culture

13 % - Engins agricoles et chauffage des serres

Industrie = 78 Mt égCO₂

24 % - Matériaux de construction

26 % - Métallurgie

11 % - Agroalimentaire

15 % - Autres

Bâtiments = 75 Mt éqCO2

64 % – Résidentiel 36 % - Tertigire

Transformation d'énergie = 44 Mt éqCO₂

45% - Électricité

15 % - Raffinage du pétrole 14 % – Chauffage urbain

Déchets = 15 Mt éqCO₂

Contribution of livestock systems in GHG emissions

Secteurs émetteurs en 2021

Activités par secteur

Transports = 113 Mt éqCO₂

53 % – Voitures
27 % – Poids lourds
14 % – Véhicules utilitaires
3 % – Avions (vols intérieurs)

3 % - Autres (maritime, deux roues, ferroviaire, fluvial)

Agriculture = 81 Mt éqCO₂

49 % - Élevage 38 % - Culture

13 % – Engins agricoles et chauffage des serres

Industrie = 78 Mt éqCO2

24 % - Chimie

24 % – Matériaux de construction 26 % – Métallurgie

11 % - Agroalimentaire

Bâtiments = 75 Mt éqCO2

64 % - Résidentiel

Transformation d'énergie = 44 Mt éqCO₂

45 % - Électricité
15 % - Raffinage du pétrole
14 % - Chauffage urbain
26 % - Autres

Déchets = 15 Mt éqCO₂

Contribution of livestock systems in GHG emissions

Livestock farming:
48% of
Agriculture's emissions

In FR GHG, sheep farms represent less than 1%

Secteurs émetteurs en 2021

Activités par secteur

Transports = 113 Mt éqCO₂ 53 % - \

27 % - Poids lourds

14 % – Véhicules utilitaires 3 % – Avions (vols intérieurs)

3 % - Autres (maritime, deux roues, ferroviaire, fluvial)

Agriculture = 81 Mt éqCO₂

49 % - Élevage

13 % - Engins agricoles et chauffage des serres

Industrie = 78 Mt éqCO2

24 % – Chimie

24 % - Matériaux de construction

26 % – Métallurgie 11 % – Agroalimentaire

15 % - Autres

Sâtiments = 75 Mt égCO2

64 % - Résidentiel

Transformation d'énergie = 44 Mt éqCO2

45 % - Électricité
15 % - Raffinage du pétrole
14 % - Chauffage urbain

Déchets = 15 Mt éqCO₂

Contribution of livestock systems in GHG emissions

Livestock
farming:
48% of
Agriculture's
emissions

In FR GHG, sheep farms represent less than 1% Livestock farming: can compensate its GHG emissions

Especially for sheep farms that use mainly grass areas

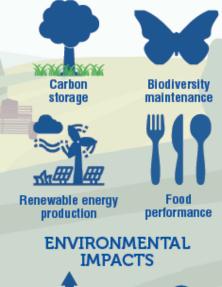
TALL TOPA

How to assess the carbon footprint of sheep farms?

Methodology

How to assess the carbon footprint of sheep farms?

Using the CAP'2ER® tool based on LCA


Objectives of this tool:

- To assess the environmental performance of a farm
- To position itself in relation to references
- To act to improve its practices

CAP'2ER®

A tool that takes into account the positive contributions of the farm and its negative impacts for a whole environmental assessment.

POSITIVE CONTRIBUTIONS

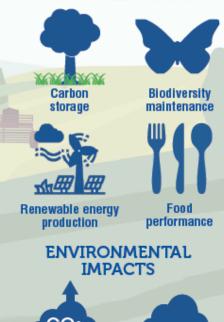
GHG emissions

consumption

Water quality (Nitrogen, plant protection product)

How to assess the carbon footprint of sheep farms?

Using the CAP'2ER tool based on LCA


Objectives of this tool:

- To assess the environmental performance of a farm
- To position itself in relation to references
- To act to improve its practices
- 2 levels of assessment: level 1 (simplified) & level 2 (detailed)
- For this study: use of level 1

CAP'2ER®

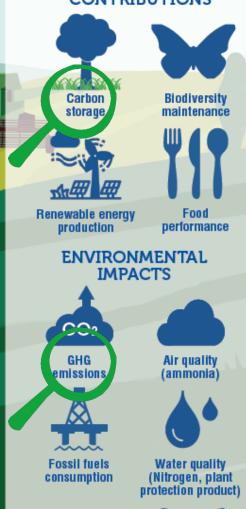
A tool that takes into account the positive contributions of the farm and its negative impacts for a whole environmental assessment

POSITIVE CONTRIBUTIONS

Water quality protection product)

How to assess the carbon footprint of sheep farms?

Using the CAP'2ER® tool based on LCA


Objectives of this tool:

- To assess the environmental performance of a farm
- To position itself in relation to references
- To act to improve its practices
- 2 levels of assessment : level 1 (simplified) & level 2 (detailed)
- For this study: use of level 1

CAP'2ER®

A tool that takes into account the positive contributions of the farm and its negative impacts for a whole environmental assessment.

POSITIVE CONTRIBUTIONS

How to assess the carbon footprint of sheep farms?

Using a large French farms sample from this project :

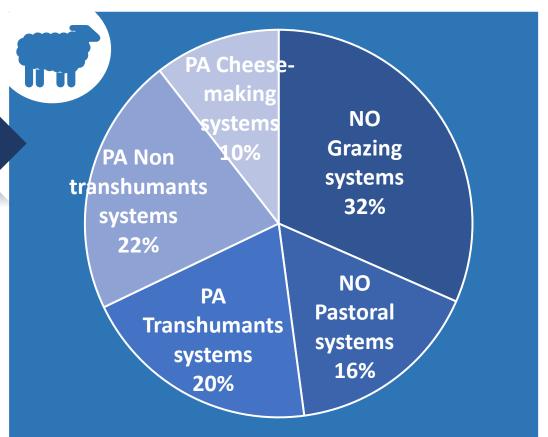
LIFE GREEN SHEEP IS:

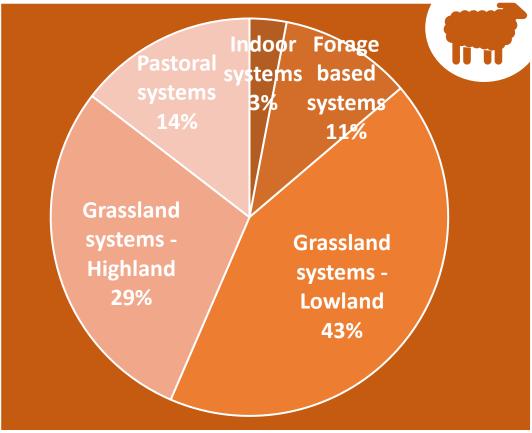
1355 demonstrative farms involved

Reduce by 12 %
GHG emissions while making sure farms are sustainable

innovative farms involved in the implementation of action levers

https://life-green-sheep.eu/


A important FR-scale sample with a diversity of rearing sheep systems (823)

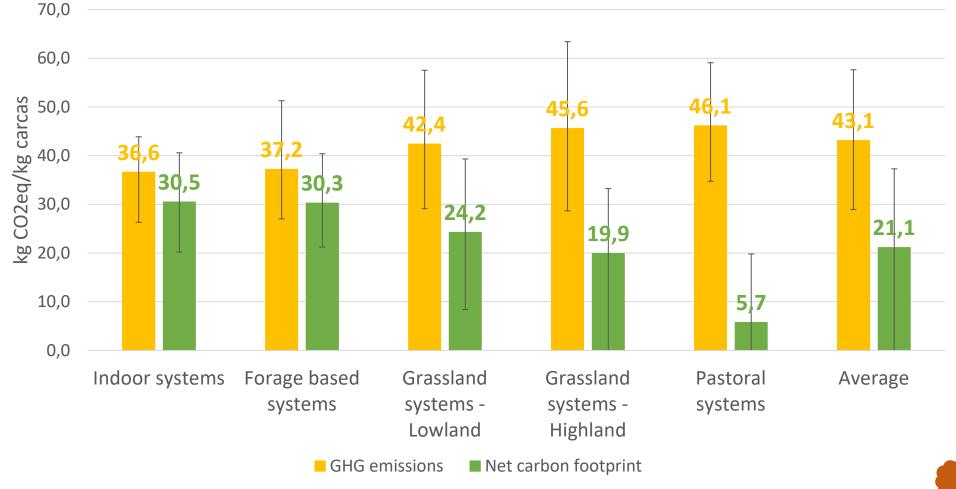


Results

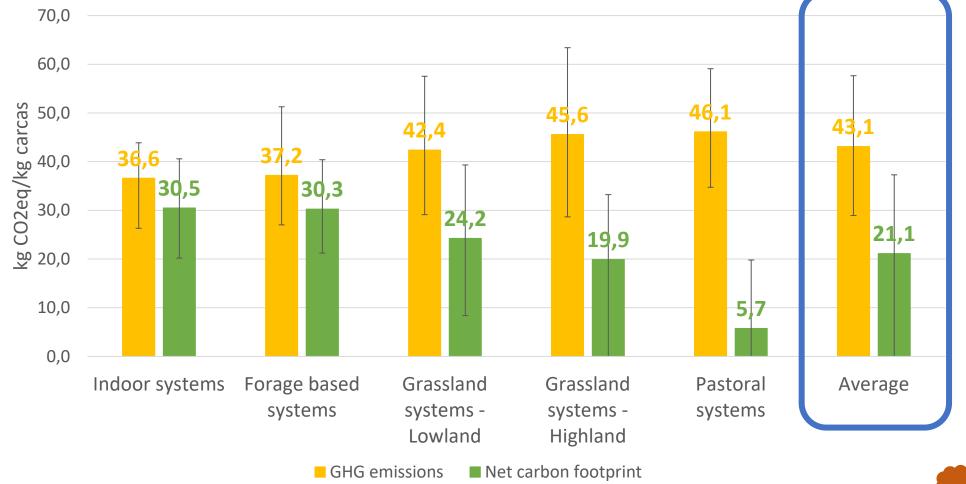
191 French dairy sheep farms

632 French meat sheep farms

NO: Nord-Occitanie region / PA: Pyrénées-Atlantiques region

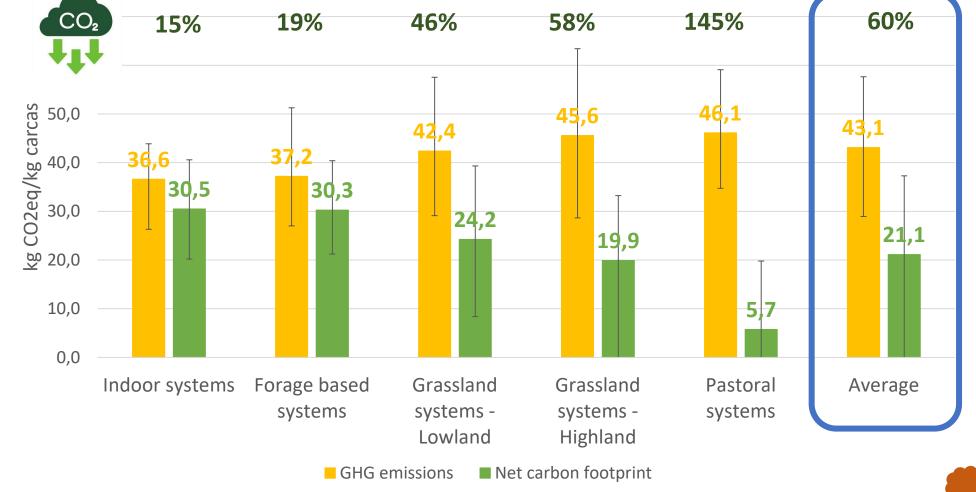


Carbon storage from grasslands and hedges: a way to reduce GHG emissions Ex of meat sheep farms

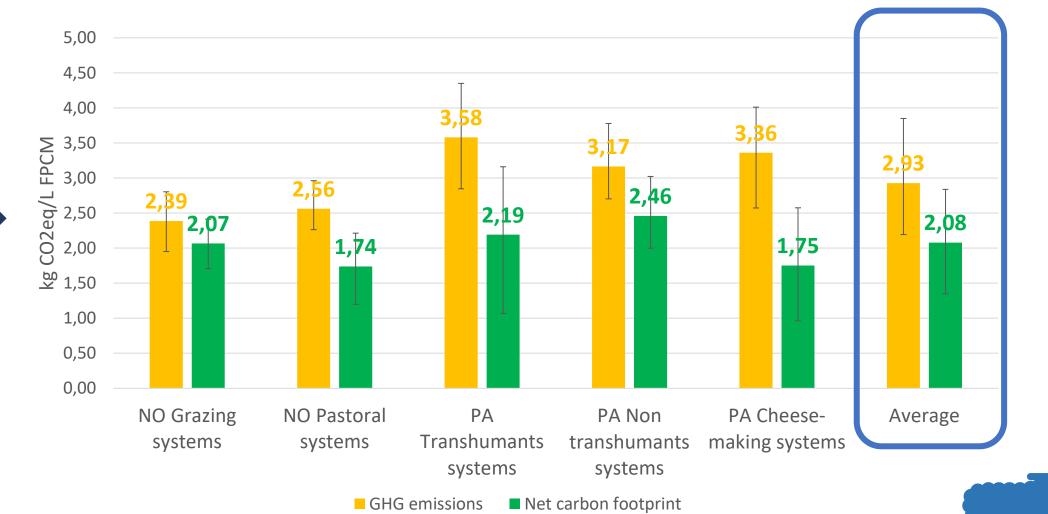

TO THE LIVE TO THE

Results

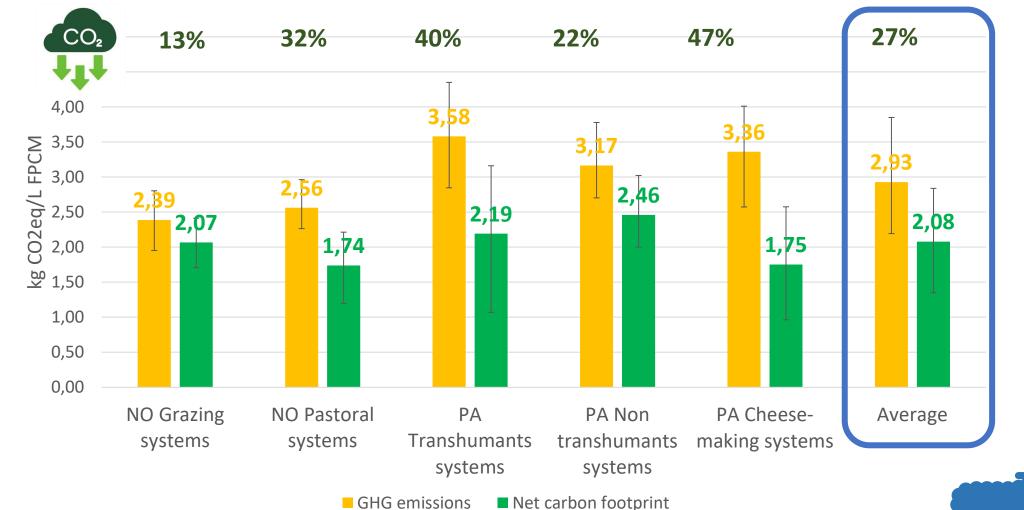
Carbon storage from grasslands and hedges: a way to reduce GHG emissions Ex of meat sheep farms



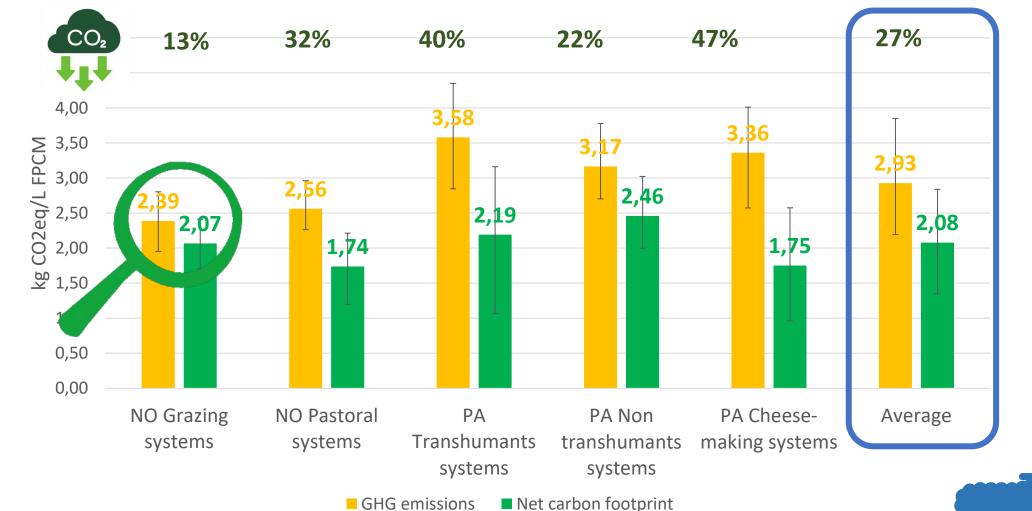
Carbon storage from grasslands and hedges: a way to reduce GHG emissions Ex of meat sheep farms



GHG emissions and offsetting vary considering the system and within them Ex of dairy sheep farms



GHG emissions and offsetting vary considering the system and within them Ex of dairy sheep farms



GHG emissions and offsetting vary considering the system and within them Ex of dairy sheep farms

Ex with dairy sheep farms

Enviro.

results

Flock

Feed

Areas

Energy

Nord-Occitanie – Grazing systems	10% lowest (6 farms)	Average (60 farms)
GHG emissions (kg CO2eq/L FPCM)	1,89	2,39
GHG emissions (kg CO2eq/ha)	7 508	7 510
Carbon storage (kg CO2eq/ha)	771	912
Prolificacy rate	1,67	1,58
Milk production (L/ewe)	421	350
Concentrates (g/L)	692	782
Part of purchased concentrates (%)	50%	55%
Ewes' grazing (hours/day of grazing)	3,4	3,0
Mineral nitrogen (kg N/ha)	39	47
Fuel consumption (L/ha)	119	130

Results

-21%

Results

Nord-Occitanie – Grazing systems

10% lowest (6 farms)

Average (60 farms)

Enviro.

results

Flock

Feed

Areas

Energy

	(6 1411115)	(66 1411113)
GHG emissions (kg CO2eq/L FPCM)	1,89	2,39
GHG emissions (kg CO2eq/ha)	7508	7510
Carbon storage (kg CO2eq/ha)	771	912
Prolificacy rate	1,67	1,58
Milk production (L/ewe)	421	350
Concentrates (g/L)	692	782
Part of purchased concentrates (%)	50%	55%
Ewes' grazing (hours/day of grazing)	3,4	3,0
Mineral nitrogen (kg N/ha)	39	47
Fuel consumption (L/ha)	119	130

Ex with dairy sheep farms

-21%

Nord-Occitanie – Grazing systems

10% lowest Ave (60 farms)

Average (60 farms)

Results

Enviro. results

Flock

Feed

Areas

Energy

	<u>` </u>	`
GHG emissions (kg CO2eq/L FPCM)	1,89	2,39
GHG emissions (kg CO2eq/ha)	/ 508	/ 510
Carbon storage (kg CO2eq/ha)	771	912
Prolificacy rate	1,67	1,58
Milk production (L/ewe)	421	350
Concentrates (g/L)	692	782
Part of purchased concentrates (%)	50%	55%
Ewes' grazing (hours/day of grazing)	3,4	3,0
Mineral nitrogen (kg N/ha)	39	47
Fuel consumption (L/ha)	119	130

Ex with dairy sheep farms

-21%

10% lowest (6 farms)

Average (60 farms)

Enviro.

Flock

Feed

Areas

Energy

GUG omissions /kg CO2og/L EDCM)	1 90	2 20
GHG emissions (kg CO2eq/L FPCM)	1,89	2,39
GHG emissions (kg CO2eq/ha)	/ 508	/ 510
Carbon storage (kg CO2eq/ha)	771	912
Prolificacy rate	1,67	1,58
Milk production (L/ewe)	421	350
Concentrates (g/L)	692	782
Part of purchased concentrates (%)	50%	55%
Ewes' grazing (hours/day of grazing)	3.4	3.0
Mineral nitrogen (kg N/ha)	39	47
Fuel consumption (L/ha)	119	130

Results

Ex with dairy sheep farms

-21%

10% lowest (6 farms)

Average (60 farms)

Enviro. results

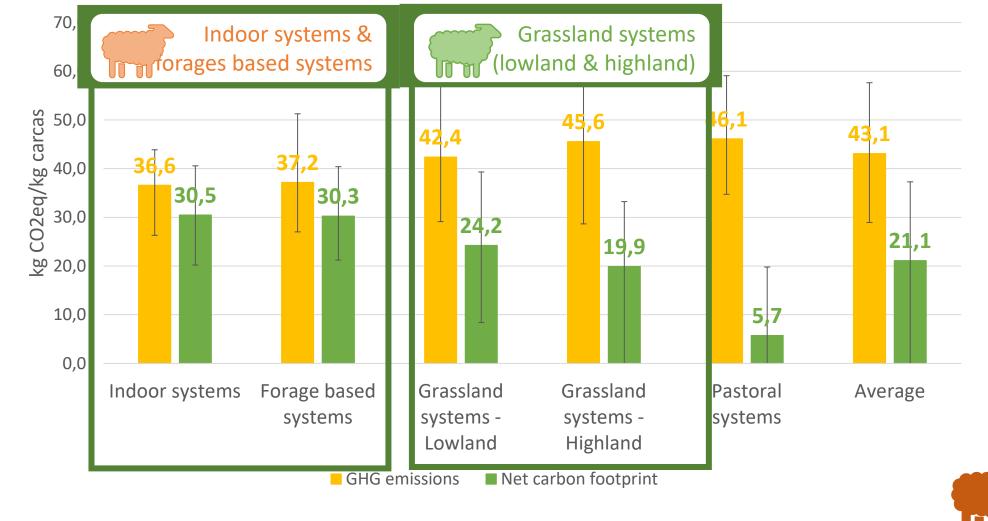
Flock

Feed

Areas Energy

GHG emissions (kg CO2eq/L FPCM)	1,89	2,39
GHG emissions (kg CO2eq/ha)	/ 508	/ 510
Carbon storage (kg CO2eq/ha)	771	912
Prolificacy rate	1,67	1,58
Milk production (L/ewe)	421	350
Concentrates (g/L)	692	782
Part of purchased concentrates (%)	50%	55%
Ewes' grazing (hours/day of grazing)	3,4	3,0
Mineral nitrogen (kg N/ha)	39	47
Fuel consumption (L/ha)	119	130

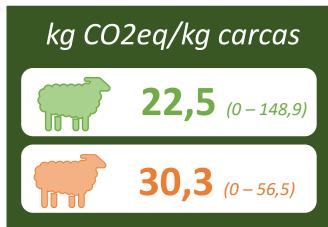
Results


EUROPA SOLVE LINORENCE TO THE LINE TO THE

Results

Carbon footprint & environmental results of grazing vs no grazing systems Ex with meat sheep farms

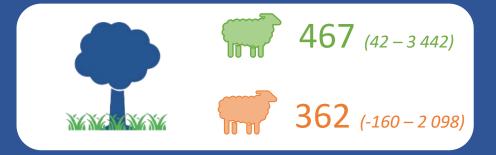
Lower net carbon footprint and environmental performances for grazing systems Ex with meat

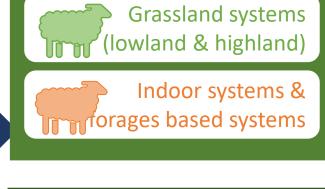


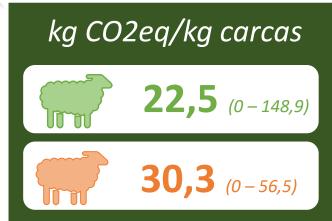
sheep farms

Results

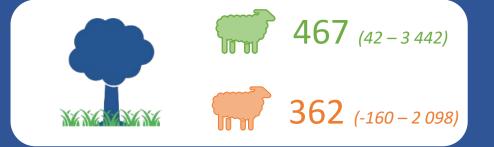
Lower net carbon footprint and environmental


performances for grazing systems Ex with meat


Carbon storage kg CO2eq / ha

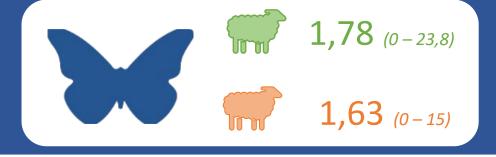


Lower net carbon footprint and environmental

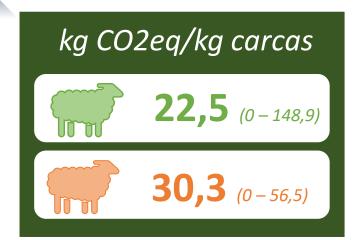

performances for grazing systems Ex with meat

sheep farms

Carbon storage kg CO2eq / ha



Results


Biodiversity conservation eq ha of

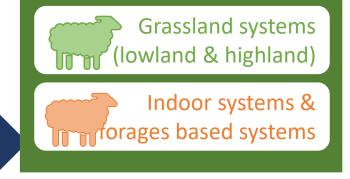
biodiv./ha

Lower net carbon footprint and environmental

performances for grazing systems Ex with meat

sheep farms

Carbon storage kg CO2eq / ha



467 (42 – 3 442)

362 (-160 - 2098)

Results

Biodiversity conservation

eq ha of biodiv./ha

1,78 (0-23,8)

1,63 (0 – 15)

Cheve

kg CO2eq/kg carcas

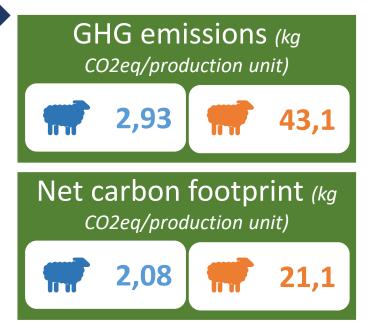
22,5 (0-148,9)

30,3 (0-56,5)

Water quality kg N/ha

17 (0 - 258)

30 (0-381)



Take home messages

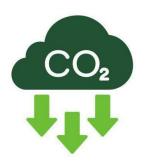
The first FR-study with a large sample size to examine GHG emissions & carbon storage from sheep farms

Take home messages

The first FR-study with a large sample size to examine GHG emissions & carbon storage from sheep farms

GHG emissions (kg cO2eq/production unit)

2,93
43,1


Net carbon footprint (kg CO2eq/production unit)

2,08

21,1

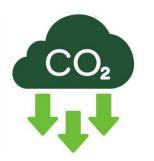
GHG emissions vary according to the rearing systems and also within them:

Optimized practices are a way to mitigate GHG emissions

Take home messages

The first FR-study with a large sample size to examine GHG emissions & carbon storage from sheep farms

GHG emissions (kg CO2eq/production unit)


2,93
43,1

Net carbon footprint (kg CO2eq/production unit)

2,08 21,1

GHG emissions vary according to the rearing systems and also within them:

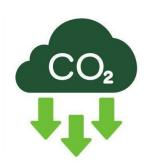
Optimized practices are a way to mitigate GHG emissions

Grazing is a solution to reduce GHG emissions

Take home messages

The first FR-study with a large sample size to examine GHG emissions & carbon storage from sheep farms

GHG emissions (kg CO2eq/production unit)


2,93
43,1

Net carbon footprint (kg CO2eq/production unit)

2,08
21,1

GHG emissions vary according to the rearing systems and also within them:

Optimized practices are a way to mitigate GHG emissions

Grazing is a solution to reduce GHG emissions

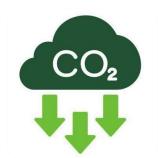
A way to offset GHG emissions

Take home messages

The first FR-study with a large sample size to examine GHG emissions & carbon storage from sheep farms

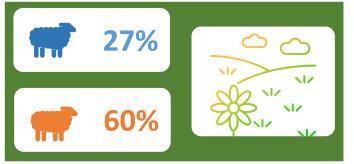
GHG emissions (kg CO2eq/production unit)

2,93


43,1

Net carbon footprint (kg CO2eq/production unit)

2,08
21,1


GHG emissions vary according to the rearing systems and also within them:

Optimized practices are a way to mitigate GHG emissions

Grazing is a solution to reduce GHG emissions

A way to offset GHG emissions

Improvement of other environmental indicators

Thanks to all French partners for these results!

Financial supports

Follow us: https://life-green-sheep.eu/

