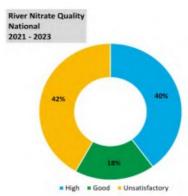
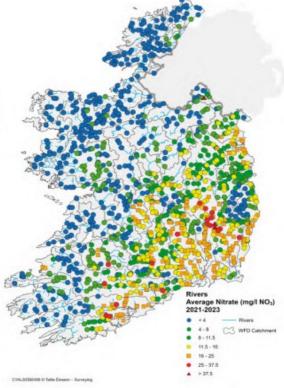


Effect of Sward Type on Nitrogen Excretion of Late Lactation Dairy Cows

E. Wims^{1,2}, B. McCarthy¹, J. P. Murphy¹, T. F. O'Callaghan² and M. Dineen¹

¹Teagasc, AGRIC, Moorepark, Fermoy, Co. Cork, Ireland; ²School of Food and Nutritional Sciences, UCC, Co. Cork, Ireland





Introduction

- Grass-based systems support greater sustainability
- 42% of Irish rivers have unsatisfactorily high nitrate levels
 - Agricultural sources are a significant contributor
- Urine patches are a channel for N loss
- Urinary nitrogen (UN) deposition depends on:
 - N concentration of urine
 - Urine volume
- Inclusion of plantain can mitigate N loss

Experimental Design

- Swards established July, 2022
- Experiment conducted from August October, 2023

Grass-only (GO) 50 kg N/ha/cut

Grass-clover (GC) 25 kg N/ha/cut

Grass-clover-plantain (GCP) 25 kg N/ha/cut

Experimental Design

- 3 x 3 Latin square
 - 9 rumen cannulated Holstein-Friesian cows in their third lactation
 - 181 ± 12 days in milk

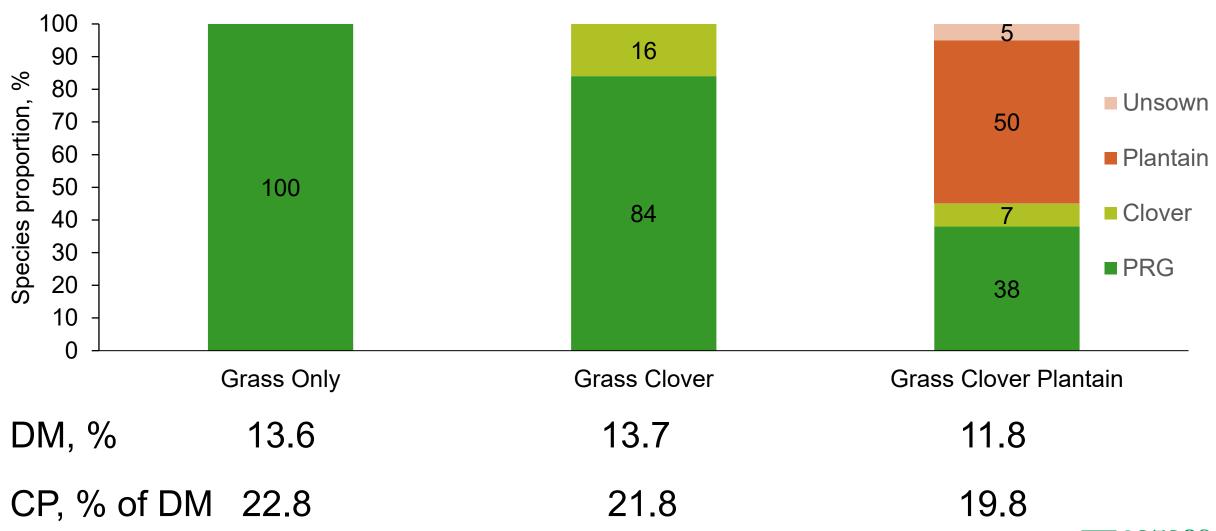
Period 1		Pei	riod 2	Period 3		
Adaption Measurement		Adaption	Adaption Measurement Ad		Measurement	
21d	8d	21d	8d	21d	8d	

- Data were analysed using MIXED procedure of SAS
 - Fixed effects of period, treatment and the interaction of period and treatment
 - Random effect of cow

Materials and Methods

- Cows were placed in a metabolism facility
- Total collection of faeces and urine
- Urination events and volume per event were measured using flow meters

Materials and Methods

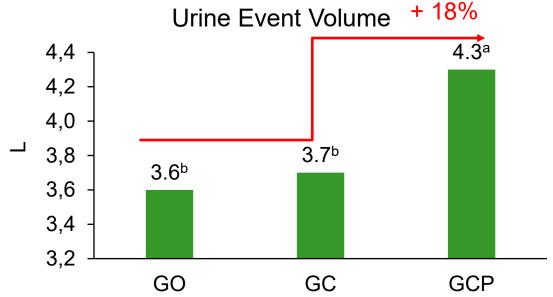

- Faecal and urine output was weighed daily
- Faecal samples were freeze-dried and milled
- Faecal and urine samples were analysed for N concentration

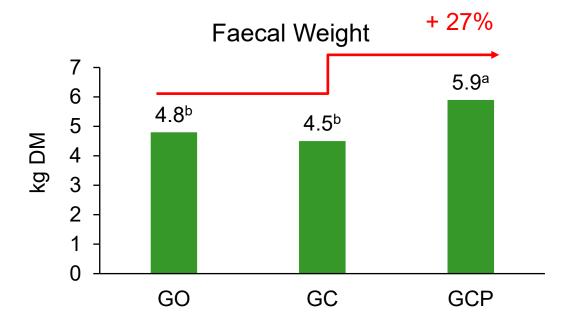
Botanical and Nutrient Composition

Effect of Sward Type on DMI and Milk Production

Item	GO	GC	GCP	SEM	<i>P</i> -value
DMI, kg d ⁻¹	19.7	19.2	19.2	0.55	0.54
Milk yield, kg d ⁻¹	18.2	18.0	17.8	0.88	0.92
Milk fat, %	4.60	4.58	4.23	0.17	0.05
Milk fat, kg d ⁻¹	0.83 ^a	0.81 ^a	0.74 ^b	0.03	<0.01
Milk protein, %	3.88	3.87	3.83	0.09	0.56
Milk protein, kg d ⁻¹	0.70	0.69	0.67	0.03	0.76
Milk solids, kg d ⁻¹	1.53	1.50	1.41	0.06	0.13
MUN, mg/dL	19.5 ^a	18.1 ^a	15.4 ^b	0.50	< 0.01


Effect of Sward Type on DMI and Milk Production


Item	GO	GC	GCP	SEM	<i>P</i> -value
DMI, kg d ⁻¹	19.7	19.2	19.2	0.55	0.54
Milk yield, kg d ⁻¹	18.2	18.0	17.8	0.88	0.92
Milk fat, %	4.60	4.58	4.23	0.17	0.05
Milk fat, kg d ⁻¹	0.83 ^a	0.81 ^a >	0.74 ^b	0.03	<0.01
Milk protein, %	3.88	3.87	3.83	0.09	0.56
Milk protein, kg d ⁻¹	0.70	0.69	0.67	0.03	0.76
Milk solids, kg d ⁻¹	1.53	1.50	1.41	0.06	0.13
MUN, mg/dL	19.5 ^a	18.1 ^a >	15.4 ^b	0.50	<0.01



Urinary and Faecal Output

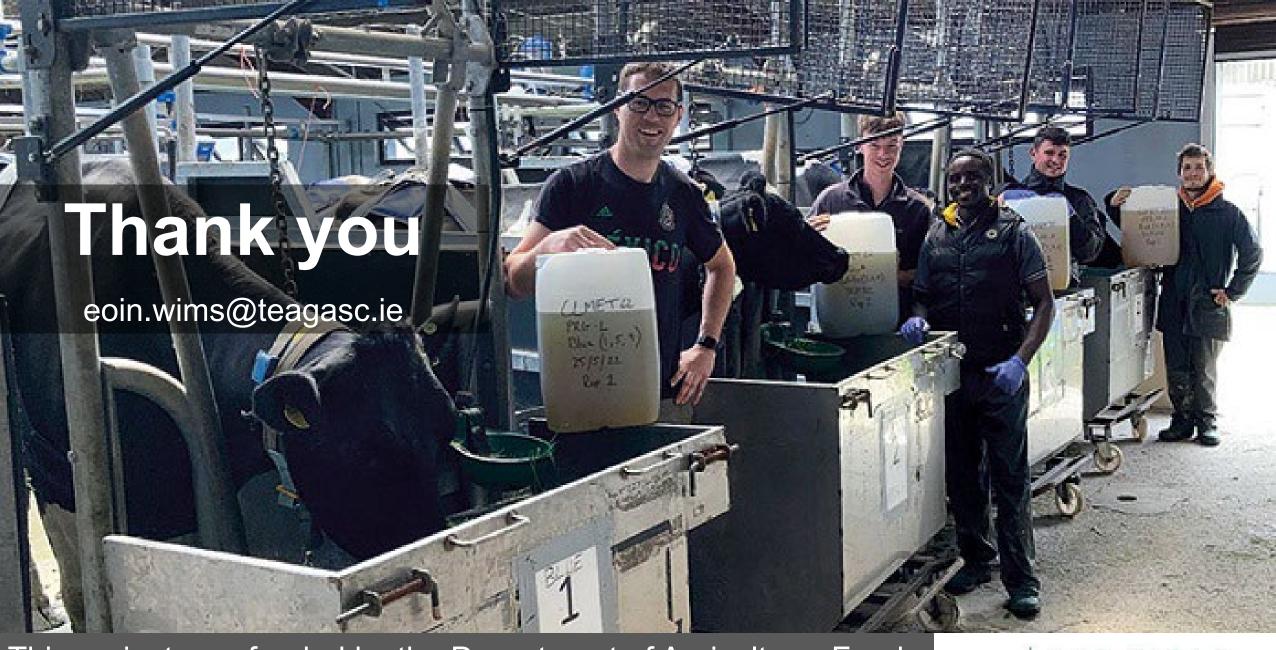
N intake, Concentration in Output and Partitioning

Item	GO	GC	GCP	SEM	<i>P</i> -value		
N intake, g d ⁻¹	714 ^a	664 ^{ab}	613 ^b	20.3	<0.01		
N in urine, g/100 g	0.63 ^a	0.58 ^a	0.36 ^b	0.02	< 0.01		
N in faeces, g/100 g DM	3.39 ^a	3.45 ^a	3.09 ^b	0.03	< 0.01		
N in milk, g/100 g	0.61	0.61	0.60	0.01	0.60		
-41%							

N intake, Concentration in Output and Partitioning

Item	GO	GC	GCP	SEM	<i>P</i> -value
N intake, g d ⁻¹	714 ^a	664 ^{ab}	613 ^b	20.3	< 0.01
N in urine, g/100 g	0.63 ^a	0.58 ^a	0.36 ^b	0.02	< 0.01
N in faeces, g/100 g DM	3.39 ^a	3.45 ^a	3.09 ^b	0.03	< 0.01
N in milk, g/100 g	0.61	0.61	0.60	0.01	0.60
N output, g d ⁻¹		- 9%	- 25%		
N to urine	355 ^a	323 ^b	267 ^c	8.4	< 0.01
N to faeces	161 ^b	158 ^b	182 ^a	4.9	<0.01
N to milk	110	109	107	5.6	0.79
N unaccounted	89	78	62	7.8	0.07

N intake, Concentration in Output and Partitioning


Item	GO	GC	GCP	SEM	<i>P</i> -value
N intake, g d ⁻¹	714 ^a	664 ^{ab}	613 ^b	20.3	<0.01
N in urine, g/100 g	0.63 ^a	0.58 ^a	0.36 ^b	0.02	< 0.01
N in faeces, g/100 g DM	3.39 ^a	3.45 ^a	3.09 ^b	0.03	< 0.01
N in milk, g/100 g	0.61	0.61	0.60	0.01	0.60
N output, g d ⁻¹					
N to urine	355 ^a	323 ^b	267 ^c	8.4	< 0.01
N to faeces	161 ^b	158 ^b	182 ^a	4.9	< 0.01
N to milk	110	109	107	5.6	0.79
N unaccounted	89	78	62	7.8	0.07
N output, proportion N intake					
N to urine	0.50 ^a	0.49 ^a	0.44 ^b	0.01	< 0.01
N to faeces	0.23 ^b	0.24 ^b	0.30 ^a	0.005	< 0.01
N to milk	0.16	0.17	0.17	0.005	0.05
N unaccounted	0.11	0.10	0.09	0.013	0.33

Conclusion

- GCP increased urine volume and frequency
- Cows offered GCP had lower UN output and increased faecal N, resulting in a greater spread of urine patches at lower N loading
- Lower UN loading could minimise N leaching risk

This project was funded by the Department of Agriculture, Food and Marine's Competitive Research Funding Programme

An Roinn Talmhaíochta, Bia agus Mara Department of Agriculture, Food and the Marine