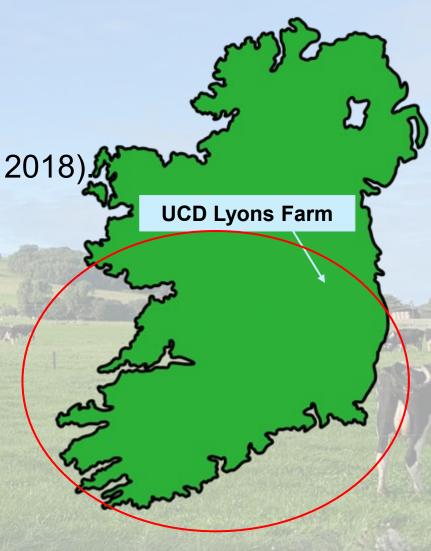
Dairy cows reduce free water intake when offered different fresh-cut pasture species

Cian Minogue^{1,3}, Tommy Boland¹, Stafford Vigors¹, Michael Dineen², Niall Walsh³, and Zoe McKay¹.

¹School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland, D04W656. ²Teagasc, Animal & Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland, P61C996.

³UCD Lyons Farm, Lyons Estate, Celbridge, Naas, Co. Kildare, W23 ENY2, Ireland.



Agriculture in Ireland

- 17,000 dairy farms an average of 91 cows on 55 ha.
- Predominantly spring calving system.
- Grazed grass 60% of the dairy cow diet (O'Brien et al., 2018).

Environmental targets

- A 25% reduction in GHG emissions by 2030.
- Reduce NH₃ emissions by 1% by 2029.
- 50% reduction in nutrient losses by 2030.
- 'Good status' in all water bodies by 2027.

Plantago lanceolata

- Offering dairy cows forage plantain (*Plantago lanceolata*; **PL**) has resulted in:
 - Greater forage and total water intakes (TWI).
 - Increased urine volumes.
 - Lower urinary N concentration.
 - Similar/greater levels of milk production.

(Box et al., 2017; Minnée et al., 2020)

- Urinary N in the environment volatile.
 - N₂O
 - NH₃
 - NO₃₋

Plantago lanceolata

- Plantain compared to perennial ryegrass (Lolium perenne; PRG):
 - Lower dry matter (DM) content.
 - Lower soluble N content.
 - Lower fibre content.
 - Greater mineral content.

(Minnée et al., 2020; Hearn et al., 2022)

- Limited research on dairy cows' pattern of free water intake (FrWI) when offered a lower DM forage.
- A paucity of information on water partitioning in dairy cows when offered forages of different DM content.

Research objective

 To determine the TWI and urinary N concentration produced by lactating dairy cows offered fresh-cut forages containing PL.

 To better understand the pattern of FrWI and partitioning of water in lactating dairy cows offered fresh-cut forages containing PL.

Hypothesis

 Lactating dairy cows offered forage containing PL would have an altered FrWI pattern and greater TWI.

 Nitrogen concentration in the urine would be reduced in cows offered the forage containing PL.

Methodology

- Eight multiparous, mid-lactation dairy cows were assigned to 2 treatments in a 2x2 crossover design (n = 8).
- The 2 treatments were a fresh-cut PRG and white clover forage mixture (PRG), and a PRG, white clover, and PL forage mixture (PLA).
- Each period was 21 days in duration:
 - 13 days of dietary acclimatization indoors. Dietary & env. acclimatization (13+3 d) Measurements (5 d)
 - 3 days of environmental acclimatization.
 - 5 days of measurements in individual tie stalls.

Methodology (continued)

- Water intake was recorded over the 5 days and individual FrWI was recorded using the Terra NutriTECH Opis mineral system.
- Feed water intake was calculated by measuring the fresh weight intake of forage and concentrate and correcting them for DM content.
- Data was analyzed using the MIXED procedure of SAS® Studio.
- Fixed effects included treatment, hour, period, and appropriate interactions.
- Cow within sequence was considered the random effect.

Results

Table 1. Pre-cutting herbage yield and botanical composition of the forages.

Item	Treatment ¹		
	PRG	PLA	
Pre-cutting herbage yield (kg DM/ha)	1405	1389	
Botanical composition (% species on a D			
PRG	80	23	
White clover	15	7	
Plantain stem	-	9	
Plantain leaf	-	59	
Unsown	5	2	

¹ Treatment: **PRG** = perennial ryegrass and white clover; **PLA** = perennial ryegrass, white clover, and plantain.

Table 2. Chemical composition of the forages offered to lactating dairy cows.

Forage Chemical Composition	Treatment ¹			
g/kg DM unless otherwise stated	PRG	PLA		
Dry matter (%)	17.1	16.2		
Ash	98	129		
Crude Protein	164	159		
Neutral Detergent Fibre	450	374		
Acid Detergent Fibre	247	230		
Neutral Detergent Insoluble Crude Protein	56	66		
Water Soluble Carbohydrates	69	51		
Non-Fibre Carbohydrates	320	385		

¹ Treatment: **PRG** = perennial ryegrass and white clover; **PLA** = perennial ryegrass, white clover, and plantain.

Table 3. The effect of treatment on dry matter intake (**DMI**) and milk production in lactating dairy cows.

	Treatment ¹			P - value	
	PRG	PLA	SEM	Treatment	Treatment × Period
DMI, kg/d					
Forage	18.7	20.1	0.36	0.005	NS
Concentrate	2.75	2.75			
Total	21.4 +1.	5 kg 22.9	0.36	0.005	NS
Milk					
Yield, kg/d	24.9	25.8	0.88	0.06	NS
Fat, %	4.92	4.60	0.124	0.003	NS
Protein, %	3.73	3.72	0.056	0.48	NS

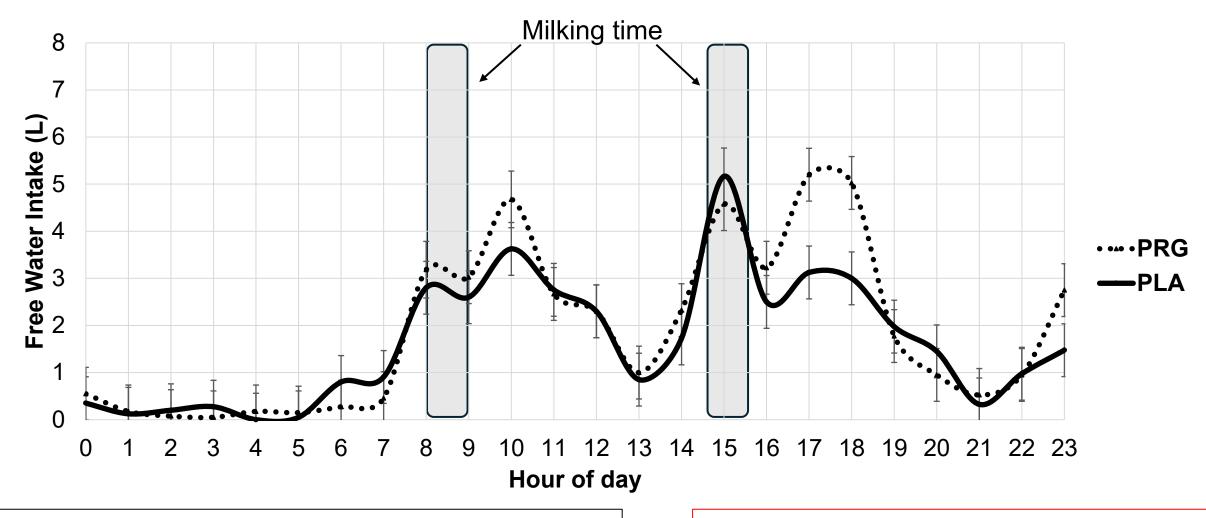
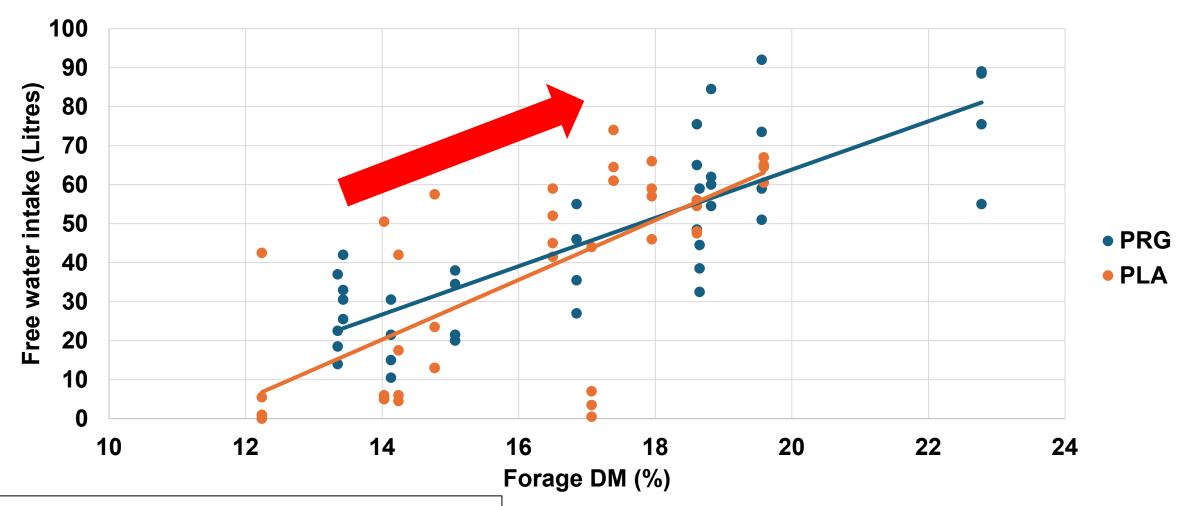

¹ Treatment: **PRG** = perennial ryegrass and white clover; **PLA** = perennial ryegrass, white clover, and plantain.

Table 4. The effect of treatment on water intake and urinary N concentration in lactating dairy cows.

	Treatment ¹			P - value		
Water intake (L/d)	PRG	PLA	SEM	Treatment	Treatment × Period	
Feed	93.1	106.3	1.61	<.0001	NS	
Free	46.1	37.4	4.37	0.03	NS	
Total	139.2	143.7	4.72	0.25	NS	
Urine						
N (%)	0.45	0% 0.36	0.018	<.0001	NS	

¹ Treatment: **PRG** = perennial ryegrass and white clover; **PLA** = perennial ryegrass, white clover, and plantain.

Figure 1. Mean hourly FrWI of lactating dairy cows.



PRG = perennial ryegrass and white clover; **PLA** = perennial ryegrass, white clover, and plantain.

No significant difference in FrWI between treatments at any hour of the day ($\alpha = 0.05$).

Figure 2. Correlation between forage DM % and FrWI.

• A positive correlation existed with forage DM % and FrWI (r = 0.75, P < 0.0001; n = 80).

PRG = perennial ryegrass and white clover; **PLA** = perennial ryegrass, white clover, and plantain.

Table 5. The effect of treatment on the water balance of lactating dairy cows.

	Treatment ¹			P - value		
Item	PRG	PLA	SEM	Treatment	Treatment × Period	
Water excreted, L/d						
Milk	21.7	22.6	0.84	0.02	NS	
Feces	53.5	47.6	3.06	0.08	NS	
Urine	38.3	43.8	2.48	0.04	NS	
Water balance	25.6	29.6	2.02	0.19	NS	

¹ Treatment: **PRG** = perennial ryegrass and white clover; **PLA** = perennial ryegrass, white clover, and plantain.

Table 6. The effect of treatment on water partitioning in lactating dairy cows.

	Treatment ¹			P - value		
Item	PRG	PLA	SEM	Treatment	Treatment × Period	
Water partitioning						
Milk	0.16	0.16	0.008	0.78	NS	
Feces	0.38	0.33	0.013	0.03	NS	
Urine	0.28	0.31	0.009	0.03	0.05	
Water accounted	0.81	0.79	0.012	0.26	NS	

¹ Treatment: **PRG** = perennial ryegrass and white clover; **PLA** = perennial ryegrass, white clover, and plantain.

Conclusions

- Free water intake was significantly influenced by forage DM %.
 - Cows offered the lower DM forage had a reduced FrWI.
 - However, due to minimal difference in forage DM % between the treatments the pattern of FrWI and TWI were not impacted.
- The higher urine production for cows offered PLA reduced the concentration of N in urine.
- The different sources of water intake between the treatments may have contributed to the differences observed in water partitioning.
- Farms employing water-based delivery methods of supplements should consider the effect of pasture DM content on the total FrWI of lactating dairy cows.

Thank you for your attention

cian.minogue@ucdconnect.ie

This study was funded by the Department of **Agriculture Food and the Marine's Competitive** Research Funding Programme (2021R482), under the project name 'PASTURE-NUE'.

An Roinn Talmhaíochta, Bia agus Mara Department of Agriculture, Food and the Marine

References

- Box, L. A., G. R. Edwards, and R. H. Bryant. 2017. Milk production and urinary nitrogen excretion of dairy cows grazing plantain in early and late lactation. New Zealand Journal of Agricultural Research 60(4):470-482 http://doi.org/10.1080/00288233.2017.1366924.
- Hearn, C., M. Egan, M. B. Lynch, C. Fleming, and M. O'Donovan. 2022. Seasonal variations in nutritive and botanical composition properties of multispecies grazing swards over an entire dairy grazing season. Grassland Research 1(4):221-233 http://doi.org/10.1002/glr2.12037.
- Minnée, E. M. K., B. Kuhn-Sherlock, I. J. B. Pinxterhuis, and D. F. Chapman. 2019. Meta-analyses comparing the nutritional composition of perennial ryegrass (Lolium perenne) and plantain (Plantago lanceolata) pastures. Journal of New Zealand Grasslands:117-124 http://doi.org/10.33584/jnzg.2019.81.402.
- Minnée, E. M. K., C. M. T. Leach, and D. E. Dalley. 2020. Substituting a pasture-based diet with plantain (Plantago lanceolata) reduces nitrogen excreted in urine from dairy cows in late lactation. Livestock Science 239 http://doi.org/10.1016/j.livsci.2020.104093.
- O'Brien, D., B. Moran, and L. Shalloo. 2018. A national methodology to quantify the diet of grazing dairy cows. J Dairy Sci 101(9):8595-8604 http://doi.org/10.3168/jds.2017-13604.