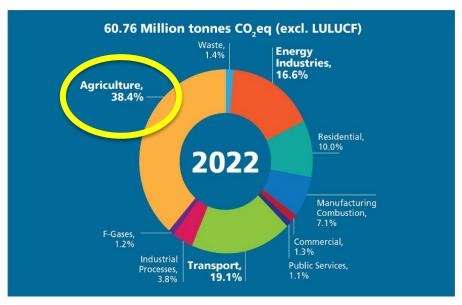


Beef production in Ireland


- Irish temperate climate facilitates a pasture based system long grass growing season
- Grazed pasture: cheapest feed resource available to cattle (Finneran et al.,
- Seasonal grass-based systems prevail

Key objective: maximise beef production from grazed pasture

Challenges:

- Low farm profitability
- Increasing legislation to reduce the environmental impacts of agriculture (CH₄, N)
- Low cost productive pastures comprises perennial ryegrass and nitrogen-fixing white clover
- Increasing interest in multispecies swards (MSS)
- Further enhance animal growth and performance?
- Potential to reduce CH₄ emissions (via condensed tannins)?

Perennial ryegrass-white clover (PRG-WC) vs. Multispecies swards (MSS)

Multispecies sward (MSS): botanically diverse sward consisting of grass (perennial ryegrass), legumes (white clover and red clover) and herbs (plantain and chicory).

- Increased feed intake in dairy cows offered MSS vs. PRG swards (McCarthy et al., 2023, Roca-Fernandez et al., 2016)
- Increased animal performance in beef cattle offered PRG/WC vs. PRG (O'Riordan et al., 1996) and in sheep offered PRG/WC and MSS vs. PRG (Grace et al., 2018)
- Reduction in CH₄ emissions from legume and herbs containing condensed tannins (Roldan et al., 2022, Jafari et al., 2019, Totty et al., 2013)

What have additional species to PRG & WC i.e. red clover, plantain and chicory to offer in terms of beef cattle intake, growth and CH₄?

No literature on this.

Objectives:

 Investigate the effect of offering PRG/WC vs. MSS on feed intake, enteric methane emissions and growth performance in late-maturing beef steers

Materials & Methods – Experimental design

Experimental

Design:

Charolais crossbred steers (n=44)

Body weight

(BW): 398

(SD=28.1) kg

Age:

390 (SD=19.5)

days

44 'spring-born' CHX steers

PRG/WC: Perennial ryegrass (L. perenne), white clover (T. repens)

MSS:: Perennial ryegass (L.perenne), white clover (T. repens), red clover (T. pratense), plantain (P. lanceolata) and chicory (C. intybus)

Cut & Carry period (114 Days)

Grazing season:

April

May

June

July

August

September

October

Materials & methods:

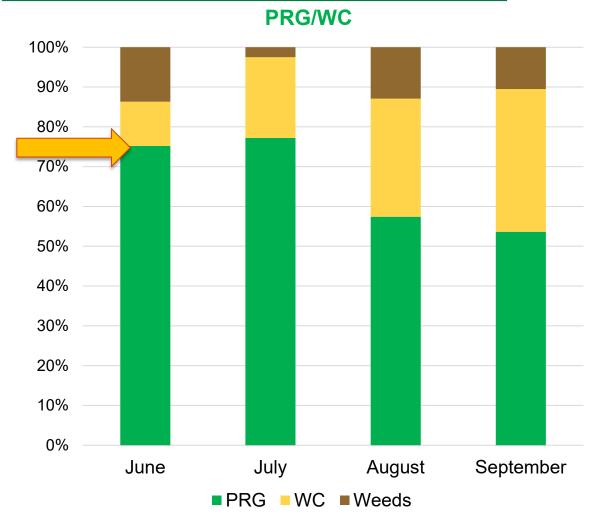
- Fresh forage, MSS and PRG/WC, harvested once daily (PGSH 5cm, PGHM 2,300kg (MSS) 2,000kg (PRG/WC) DM/ha)
- Animals were fed **3x daily**, *ad libitum*: 0700h, 1100h and 1600h
- Refusals weighed and discarded daily

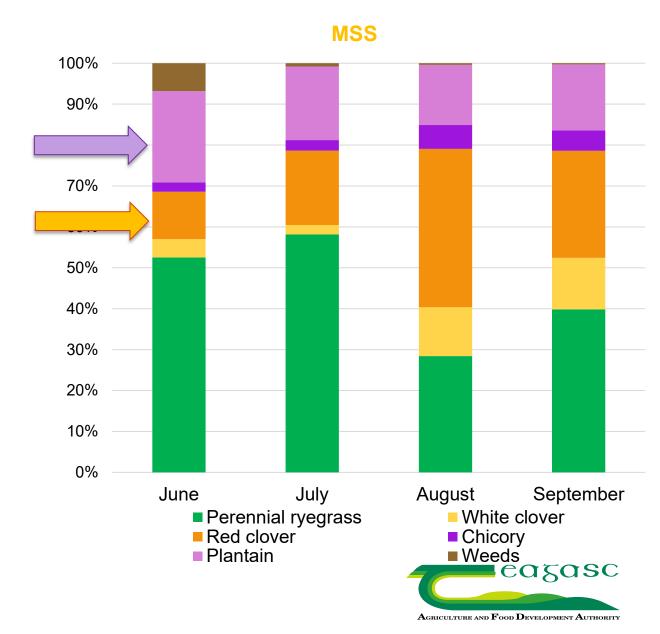
Animal measurements:

- Feed intake measured daily via Calan gates
- Enteric CH₄ emissions measured daily using C-Lock GreenFeed
- Animals weighed fortnightly, before feeding

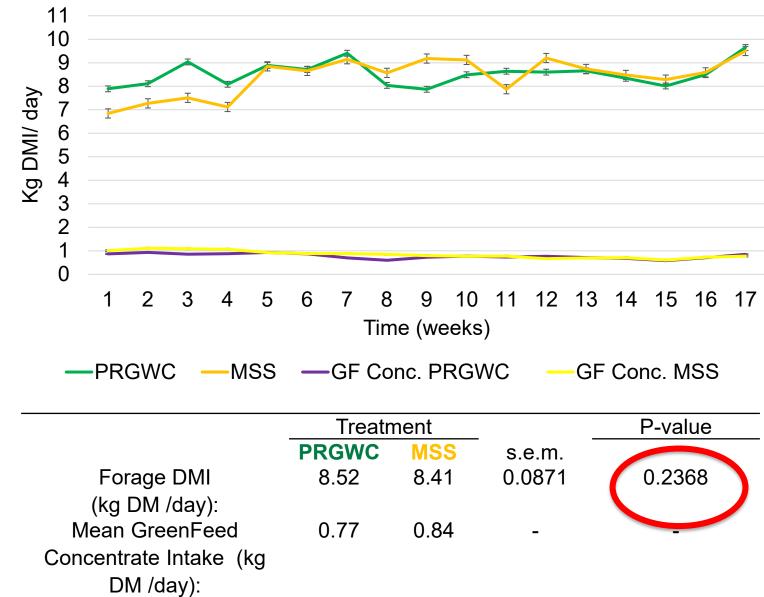
Pasture sampling:

- Daily forage sampling (1100h): DM determination, chemical analysis
- Botanical composition separation weekly (1100h): DM determination, chemical analysis
- Refusal botanical composition **3x week**: DM determination, chemical analysis

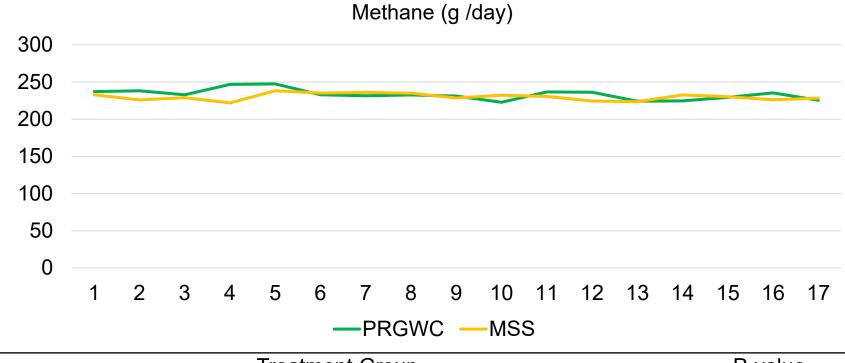




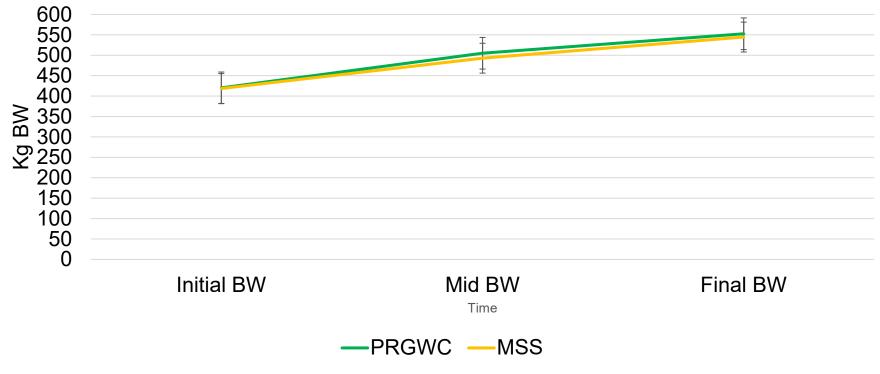
Results:

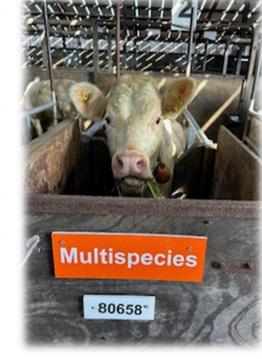

Botanical composition of forage offered

Results: Feed Intake



Results: Enteric methane (CH₄) emissions:




	Treatment Group			P-value
Traits	PRGWC	MSS	s.e.m.	_
DME (g/d)	233.49	231.16	6.028	0.7007
MY, (g/kg Forage DMI)	27.4039	27.52	0.701	0.8638
MADG (g/kg ADG)	206.95	207.63	8.511	0.9367
MI (g/kg)	0.4697	0.48	0.0106	0.434

Results: Growth (kg BW) Growth Performance (kg BW)

	Treatment		P-value	
	PRGWC	MSS	s.e.m.	
No. of animals	22	22	-	-
Initial BW (kg)	420.42	418.6	3.577	0.6134
Final BW (kg)	552.63	544.63	4.923	0.1121
ADG (kg)	1.14	1.12	0.0324	0.6172

Conclusions:

- No difference in feed intake, enteric methane emissions or growth performance in beef steers offered PRG/WC vs. MSS
- No benefit of including red clover, plantain and chicory in this study

Future work:

Zero-grazing study:

- Condensed tannin extractions from each species: anti-methanogenic potential
- Analyse blood metabolite profile of cattle (glucose, NEFA, BHB, total protein, urea, triglycerides)
- VFA, lactic acid, NH₃ extractions and analysis from rumen digesta harvested from cattle in this experiment

Silage study:

 Analyse the <u>feed intake</u>, <u>enteric methane emissions</u> and <u>growth</u> <u>performance</u> data from cattle offered <u>ensiled</u> <u>PRG/WC</u> and <u>MSS</u>

Anthelmintic study:

 Investigate the potential anthelmintic benefit of condensed tannins in cattle infected with gastrointestinal nematodes

