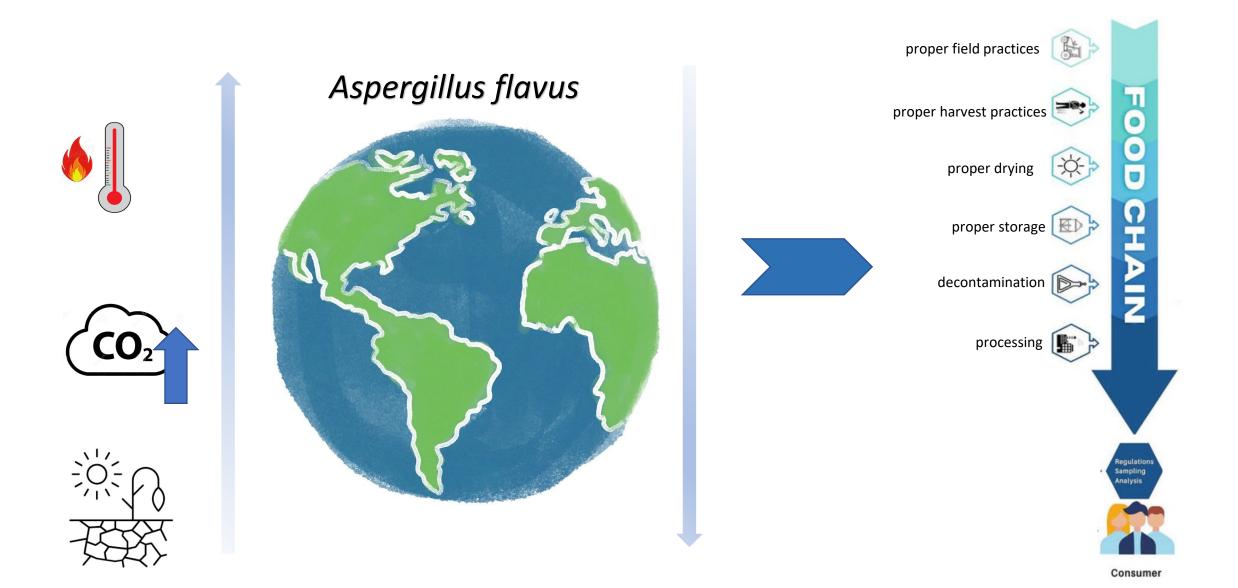


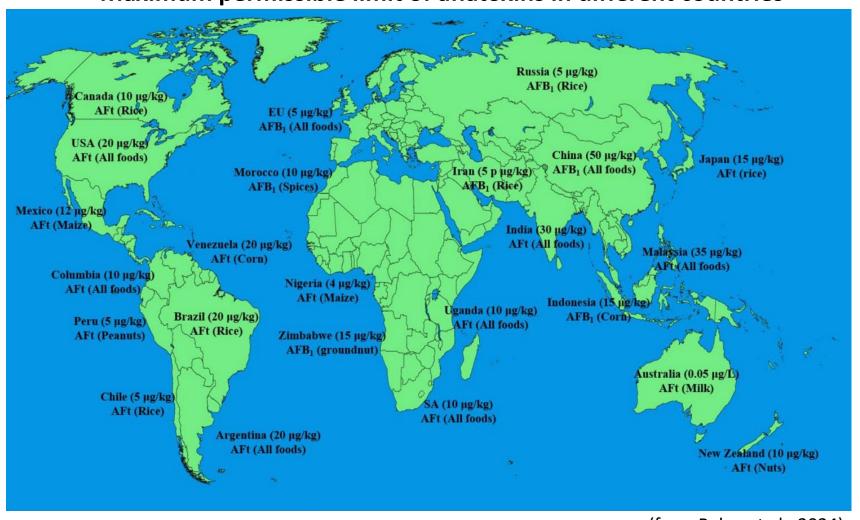
Exploitation of *Tenebrio molitor*,

Rhizopus oryzae and *Trichoderma reesei*for the degradation of AFB1 in


contaminated wheat bran

Enrico Daniso, Giulia Pascon, Costanza Uboni, Chiara Conchione, Sabrina Moret, *Francesca Tulli*

Dept. of Agriculture, Food, Environment and Animal Science, University of Udine, Italy



AFLATOXIN and climate change

AFLATOXIN an emergency of global concern

Maximum permissible limit of aflatoxins in different countries

(from Balan et al., 2024)

Natural Mitigation of Mycotoxins: Insects a true game-changer?

Different decontamination methods have been proposed over the years :

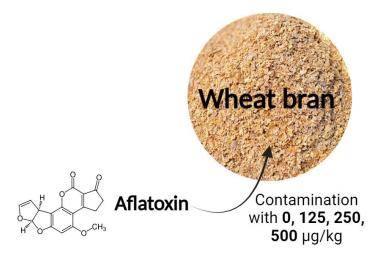
- Chemical
- Physical
- Biological

but their effectiveness or feasibility prevents their use

Aim of the study

Utilization of aflatoxin-contaminated crop as rearing substrate for *Tenebrio molitor*

Evaluation of the degradation efficacy of AFB1 contaminated substrates from *Tenebrio molitor*



Combining the aflatoxin-degrading capacity of fungal strains of *Rhizopus* oryzae and *Trichoderma reesei* to improve food safety and bioremediation

Experimental Design

1 SUBSTRATE PREPARATION

ELISA method used for AFB1 evaluation AGRAQUANT, Romer Labs, Austria

2 TENEBRIO MOLITOR REARING

Insects reared on the contaminated substrates for **44 days** under controlled conditions (T°C: 25; RH: 50-60%)

TREATMENT WITH RHIZOPUS ORYZAE AND TRICHODERMA REESEI

 4×10^6 spores g⁻¹ for culture at 30 °C for 5 days

Can these fungi further degrade the AFB1 contained in the frass?

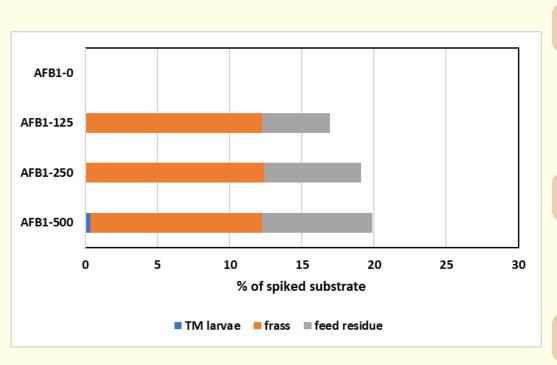
T. molitor growth parameters

Larval Growth

AFB1 level did not affect TM final weight. Mean weight (11mg) increased to a mean ind. weight of 117mg. The highest final weight was registered with AFB1-250

SGR

Negligible differences
were observed in the
specific growth rate with
higher values observed
in AFB1-250 group


Mortality

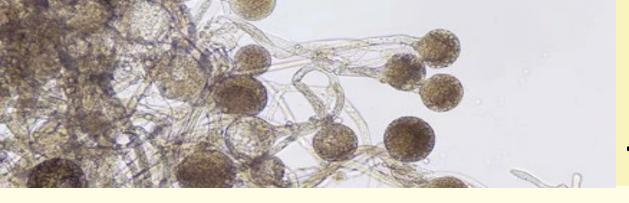
Mortality rate was higher in the AFB1-0, considered as the control diet confirming TM larvae to be quite tolerant to AFB1 concentration

	AFB1-0	AFB1-125	AFB1-250	AFB1-500	p value
Final weight (g)	0.119	0.110	0.125	0.116	0.211
SGR (%)	6.20 b	6.19 ^b	6.47^{a}	6.35 ab	0.024
Mortality (%)	12.22ª	6.54 ^b	7.28^{ab}	7.90^{ab}	0.044

AFB1 Degradation by *T. molitor* molitor

Mass balance (d.m. basis) of AFB1 in TM larvae, frass and feed residue after 44 days of larval rearing

1 Substrate Degradation


The aflatoxin B1 mass balance at the end of the breeding trial recovered between 16.9 and 19.9 % of the AFB1 initially inoculated in the different treatments.

2 Larval Accumulation

AFB1 were detected ($4.10\pm0.91\mu g/kg$) in TM larvae only with the highest contamination level, corresponding to 0.35% of the spiked AFB1

3 Frass Contamination

12.2% of the initial AFB1 content was detected in frass after larval growth independently from the contamination level.

Fungal Degradation of frass from TM rearing trial

1

Initial Frass Contamination

Frass from TM rearing contained AFB1 levels up to 67.39 µg/kg.

2

Individual Fungal Treatment

R. oryzae and *T. reesei* individually reduced AFB1 level to level to 3.12 and 4.70 μ g/kg in the highest contaminated contaminated frass

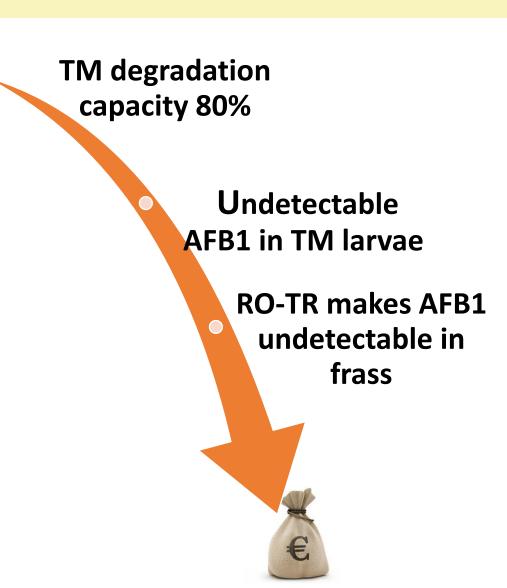
Combined Fungal Treatment

R. oryzae + T. reesei combination resulted in undetectable (< 2 ppb) AFB1 in all frass samples.

	Initial		Final	
		RO	TR	RO-TR
AFB1-0	ND	ND	ND	ND
AFB1-				
125	17.0 ± 1.68	ND	ND	ND
AFB1-				
250	32.99 ± 0.49	ND	ND	ND
AFB1-			4.7 ± 2.35	
500	67.4±5.19	3.1 ± 1.79		ND

Findings: valorization of unsuitable AFB1 contaminated substrate

Insect Bioconversion


Aflatoxin B1 did not affect survival or body weight in TM, indicating a high tolerance and no accumulation of AFB1 from AFB1 contaminated substrate up to 500 ug/kg. TM larvae could convert AFB1 contaminated substrates into valuable protein while degrading ~80% of AFB1.

Fungal Degradation

The combination of *R. oryzae* and *T. reesei* further degrade remaining AFB1, reaching undetectable level of AFB1 in TM rearing frass.

Complete Decontamination

The combined approach results in AFB1-free insect protein and decontaminated for decontaminated for agricultural use.

Conclusions and Future Directions

Further Research

Expanded trials to evaluate other aflatoxins tolerance and and metabolites analyses are are needed.

Waste Valorization

The approach envisages the the reuse of contaminated crops for valuable protein production.

Sustainable Solution

Combines bioconversion and bioremediation to re-valorize unsuitable crops and to guarantee guarantee food safety

Thank you for your attention

Degradation of AFB1 by R. oryzae and T. reesei reesei

	Microorganism			Growth Substrate	
μg/kg of AFB1	RO	TR	RO-TR	ME Broth	Frass
0	ND	ND	ND	ND	ND
65	2.28±2.28 B	$3.25 \pm 3.59^{\circ}$	ND ^A	ND ^A	$3.68\pm2.97^{\mathrm{B}}$
125	38.41±4.86 B	$41.54\pm9.58^{\mathrm{B}}$	8.97 ± 3.47^{A}	26.52±12.90 a	32.77±19.38 ^b
250	51.69±3.36 ^B	$67.68\pm4.79^{\circ}$	24.48 ± 3.08^{A}	49.04±20.50	46.79±17.80
500	74.27±10.31 ^B	93.68±10.05 °C	38.90 ± 4.60^{A}	62.46±21.52 A	75.42±27.25 ^B

A, B, C P< 0.01; a, b P<0.05