

CORRELATION BETWEEN GENETIC VALUES FOR RESISTANCE TO GASTROINTESTINAL NEMATODE INFECTION AND GROWTH TRAITS IN SHEEP

Samla M. F. Cunha^{1*}, Flavio S. Schenkel¹, Ángela Cánovas¹

¹University of Guelph, Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, 50 Stone Rd E, Guelph, ON, Canada

*scunha@uoguelph.ca

INTRODUCTION

Gastrointestinal nematode (GIN) infection can lead to morbidity, mortality, and massive economic losses.

Different approaches to control GIN must be **combined** as overreliance on anthelmintics has led to GIN resistance to available drugs.

Breeding for resistant sheep can help improve overall health, reduce economic losses, and reduce the need for anthelmintic treatments.

OBJECTIVE

Estimate correlations between Expected Progeny Differences (EPDs) for fecal egg count (FEC) and growth traits using data from a commercial farm under selection for resistance to GIN.

MATERIAL AND METHODS

Estimation of **EPDs** for **FEC** measured using the Triple Chamber (FEC-TC; n=790) and McMaster methods (FEC-M; n=1,626)

Two trait analysis

Repeatability model

ASREML software

$$y = X\beta + Za + Wpe + Sd + \varepsilon$$

Fixed effects

Month and
Year of evaluation

Random effects

Animal effect
Permanent environment effect
Contemporary group: sex + year and
month of evaluation
Residual effect

Pearson correlation between EPDs (n=14,739) for FEC and for growth traits from the GenOvis genetic evaluation system as a proxy of genetic correlations:

FEC-TC FEC-MM Lamb survival (LS)
Birth weight (BW)
50-day weight (50W)
Gain 50–100 days (G100)
Ultrasound fat (UF)
Ultrasound loin area (UL)

RESULTS AND DISCUSSION

- Selection to reduce FEC may slowly increase LS, 50W, G100, and UF (green squares in Table 1) due to a favorable correlation.
- Selection to reduce FEC may slowly reduce BW (yellow squares in Table 1) due to an unfavorable correlation.
- The correlation between UL and FEC was not significant (white squares in Table 1).

Table 1. Pearson correlation between fecal egg counts (FEC) measured using the Triple Chamber (TC) and McMaster (MM) methods and lamb survival (LS), birth weight (BW), 50-day weight (50W), gain between 50–100 days (G100), ultrasound fat (UF), and ultrasound loin area (UL).

	LS	BW	50W	G100	UF	UL
FEC-TC	-0.14*	0.08*	-0.03*	-0.12*	-0.12*	0.00
FEC-MM	-0.15*	0.09*	-0.04*	-0.13*	-0.11*	0.00

^{*}Significant correlation; The standard error for all estimates was 0.01. Green squares indicate favorable correlations and yellow squares indicate unfavorable correlations.

• With more FEC data available **genetic correlations should be estimated** using a multiple trait model to confirm these results.

TAKE HOME MESSAGE

Selecting for FEC is **not** expected to **cause** substantial **changes in other traits** currently selected in Canada and the potential changes are mostly favorable.

