

The 75th EAAP Annual Meeting 1-5 September 2024, Florence, Italy

Utilizing energy auditing in intensive livestock farming facilities

M. Moraitis, A. Balafoutis, D. Tyris, D. Manolakos, J. Maselyne, T. Amon, S. Benni, S. Kalogridis

Energy audits as an energy efficiency tool

- In 2007, the EU leaders set 3 key targets for 2020:
 - (a) 20% cut in greenhouse emissions from the 1990 levels
 - (b) 20% of EU energy to derive from RES
 - (c) 20% improvement in energy efficiency
- The last was enacted with the 2012 Energy Efficiency Directive (2012/27/EU)
- The new, recast Energy Efficiency Directive (EU) 2023/1791
 - The new directive introduces a series of measures to help accelerate energy efficiency, including embracing the "energy efficiency first" principle in the energy and non-energy policies

Energy audits as an energy efficiency tool

- "Energy audit" means <u>a systematic procedure</u> with the purpose of obtaining adequate knowledge of the energy consumption profile of a building or group of buildings, an industrial or commercial operation or installation or a private or public service, identifying and quantifying opportunities for cost-effective energy savings, identifying potential for cost-effective use or production of renewable energy and reporting the findings
- Energy audits should be mandatory and regular for enterprises with an average annual energy consumption above a certain threshold, as energy savings can be significant
- A specific European standard on energy audits is currently development

Minimum criteria for energy audits

- (a) be based on **up-to-date**, **measured**, **traceable operational data** on energy consumption and (for electricity) load profiles
- (b) comprise a **detailed review of the energy consumption profile** of buildings or groups of buildings, industrial operations or installations, including transportation
- (c) identify energy efficiency measures to decrease energy consumption
- (d) identify the potential for cost-effective use or production of renewable energy
- (e) build, whenever possible, on life-cycle cost analysis instead of simple payback periods in order to take account of long-term savings, residual values of long-term investments and discount rates
- (f) be **proportionate**, and **sufficiently representative** to permit the drawing of a reliable picture of overall energy performance and the reliable identification of the most significant opportunities for improvement

The data used in energy audits shall be storable for historical analysis and tracking performance

Types of energy audits

Level I. Walk-through energy audit

- Via energy bills and the results of a short autopsy
- Visual verifications, study of installed equipment and operating data and detailed analysis of recorded energy consumption
- A candidate list of interventions or investment is provided

Level II. Comprehensive energy audit

- Energy use survey
- A first quantitative evaluation of the interventions and investment selected to correct the defects or improve the existing installation
- On-site measurements and computer-based simulation tools to precisely evaluate the selected energy efficiency measures

Level III. Detailed energy audit

 The detailed energy audit (energy study) includes a detailed analysis of capital-intensive modifications focusing on potential costly interventions and investments requiring thorough engineering studies

Methodology

Work carried out within RES4LIVE

- Specific buildings and not the 4 pilot farms as whole units
- Descriptions and schematics of the buildings
 - Dimensions, construction materials, openings, insulation and intended usage (animal type and population)
- Consumption data classified in 4 levels of detail
 - 1st: Different types of energy (electrical, diesel fuel, biogas, natural gas)
 - 2nd: Assignment of the consumption data to each specific building of interest
 - 3rd: Assignment of the consumptions to specific devices/device types
 - 4th: Devices' working time in hours per month, for a full year cycle
- Estimations had to be done

Methodology

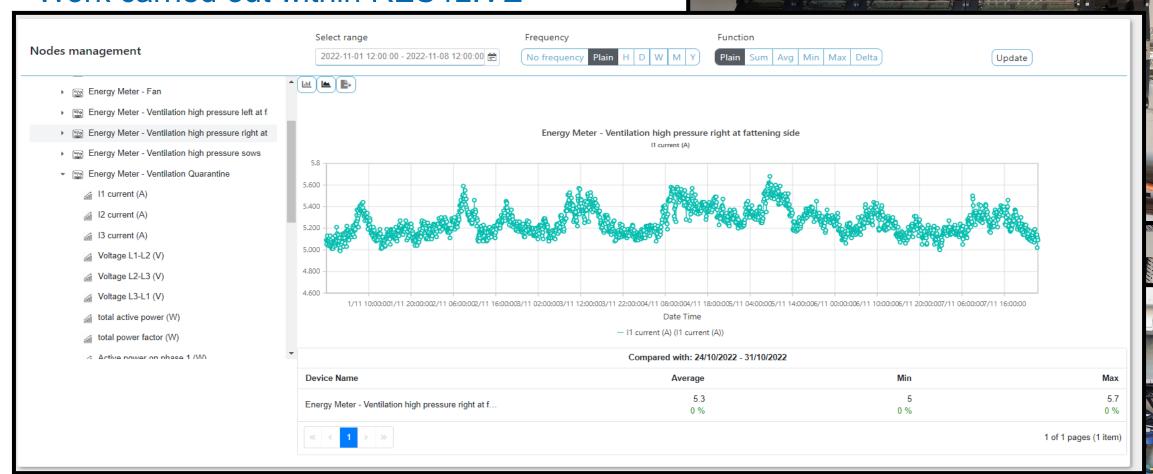
Work carried out within RES4LIVE

2. Buildings' characteristics

a. Buildings' list

Building number	Usage	Dimensions (m)					
12	Hog barn (number of animals: 400 hogs)	13.00 x 51.00					
16	Nursery barn (no. of animals: 2400 weaners)	16.10 × 62.26					
Other, please specify		-					

b. Building 12


External wall					
Building Materials	Type (Inside->Outside)	Mat. Thickness (m)			
	Precast concrete walls (W, S, E):				
	concrete	0.05			
	polystyrene insulation	0.05			
	concrete	0.07			
	brick wall (N)	0.14			

Building frame			
Building Materials	Type (Inside->)	Mat. Thickness (m)	
	Building frame in reinforced concrete	Pillars: 0.29x0.29	
	7		

Building 29															
Davies toma (mage)	Power (W)	Ougantitus	Working time (hours)											rand 7	
Device type (usage)	Power (w)	Quantity	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	KWh/ year
LED lamps (lighting)	30	8	3968	3584	3472	2880	2480	1920	1984	1984	2400	2976	3360	3968	1.051,20
A4 Lely milking robot (water treatment)	120	1	520	480	520	520	520	520	520	520	520	520	520	520	1.051,20
A4 Lely milking robot (single box)	1895	1	520	480	520	520	520	520	520	520	520	520	520	520	11.826,00
boiler	7000	1	91	91	91	91	91	91	91	91	91	91	91	91	7.665,00
circulation heating watering place	3000	1	360	360	25	0	0	0	0	0	0	0	25	250	3.060,00
compressor	3700	1	182	182	182	182	182	182	182	182	182	182	182	182	8.103,00
SmartVet ventilation	1000	3			100	200	500	800	1800	1800	200	100			5.500,00
ventilation	1200	1						200	400	400	200				1.728,00
ventilation ventilation	1800	1						200	400	400	200				2.592,00
manure scraper	550	2	365	365	365	365	365	365	365	365	365	365	365	365	2.409,00
concentrate feed snail (milking robot)	550	2	31	28	31	30	31	30	31	31	30	31	30	31	200,75
heating control gas heater	30	1	360	360	25	0	0	0	0	0	0	0	25	250	31,00
automatic dringer Urban (calves)	3500	1	60	60	60	60	60	60	60	60	60	60	60	60	2.555,00
trough heater	80	2	720	720	50								50	500	163,00
thermal boiler (heat accumulator 5 l)	2000	1	31	28	31	30	31	30	31	31	30	31	30	31	730,00
transformer (drough)	80	3	1080	1080	75	0	0	0	0	0	0	0	75	750	240,00
neon tubes (calves)	60	3	1488	1344	1302	1080	930	720	744	744	900	1116	1260	1488	1.576,80
HQI lamps (silo)	120	1	400	350	200	80	20		30	50	100	200	400	400	262,80
neon tubes	40	3	1488	1344	1302	1080	930	720	744	744	900	1116	1260	1488	43,80
slurry mixer	5000	1	23	22	23	23	23	23	23	23	23	23	23	23	1.368,75
slurry pump	15000	1	23	22	23	23	23	23	23	23	23	23	23	23	4.106,25

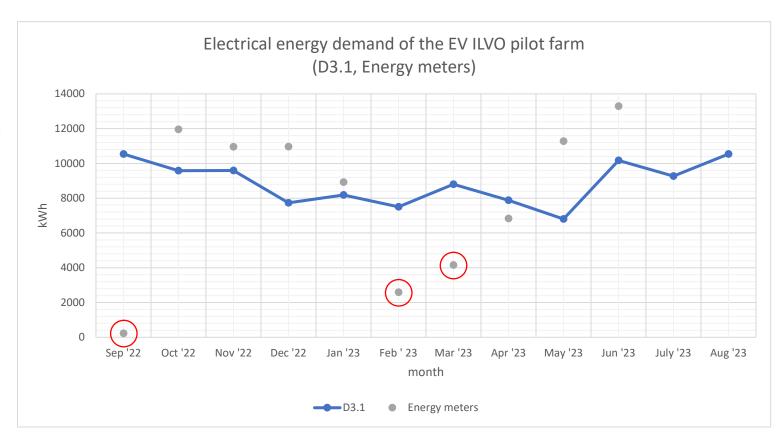
Methodology

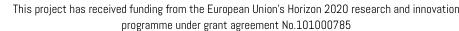
Work carried out within RES4LIVE

MINING THE PROPERTY OF THE PRO

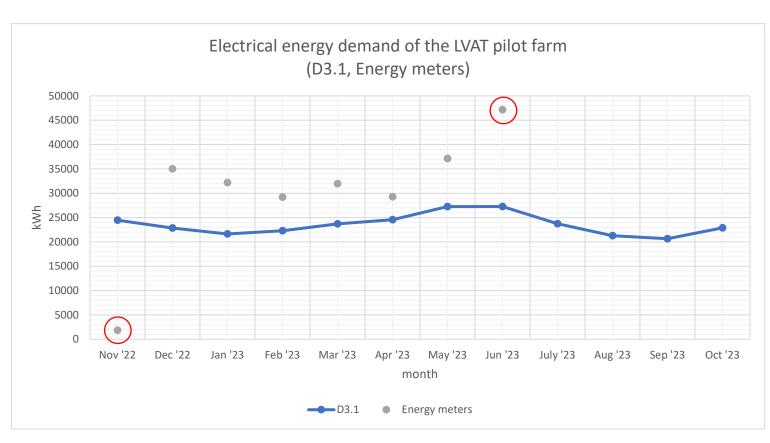
www.res4live.eu

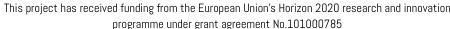
This project has received funding from the European Union's Horizon 2020 programme under grant agreement No.10100078


Comparison between energy audits and metered values

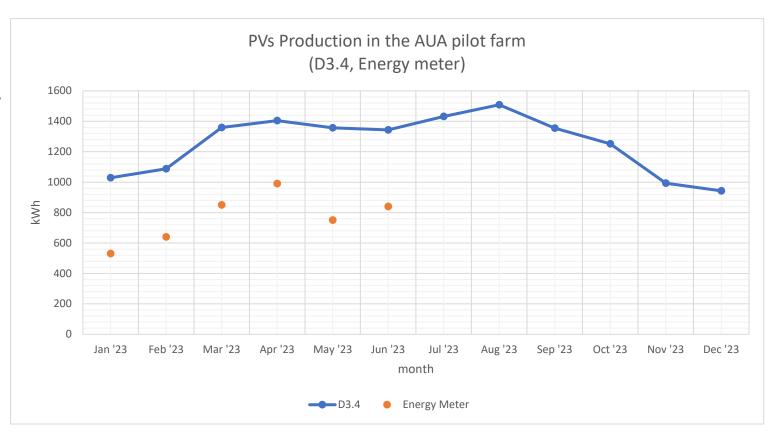

EV ILVO

- September: first month of meters' operation, depicts only the last few days
- February, March: malfunctions of the meters


Comparison between energy audits and metered values

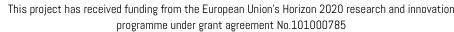

LVAT

- → First readings in late November '22
- → Malfunction of some nodes (energy meters) that were later fixed


Comparison between energy audits and metered values

AUA – PVs PRODUCTION

- → The estimations occurred over a 5-year period and the average values were calculated
- Produced energy appears to be less than the estimated


Comparison between energy audits and metered values

- In the EV ILVO experimental pilot farm (swine) the estimations were very close to the measured values
- In the LVAT experimental pilot farm (dairy), the estimations were to some extent accurate, some malfunctions altered the logged data but as in the EV ILVO farm, a well executed energy audit can provide an adequate first picture
- In the GOLINELLI commercial pilot farm (swine) the energy demand estimations were not accurate, something which was expected mostly due to the limited existing data during the audits

Conclusions

- Energy audits will be as accurate as the data retrieved
- Sufficient for a general estimation where the installation of energy meters is not feasible
- Initial depiction of the farms' energy consumption and potential to identify the most promising RES
- A number of factors such as farm location, local environment, buildings' characteristics, special farm needs (i.e. milking needs) & policies
- https://res4live.eu/public-deliverables/
 - D3.1: Report on the analysis of energy demand-consumption and RES availability in typical livestock farms

https://res4live.eu/

m.moraitis@certh.gr

www.res4live.eu

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No.101000785

