

SUSTAINABLE LIVESTOCK SECTOR UNDER CLIMATE TRANSITION (CT)

A bibliometric analysis

Anatoli Rontogianni, Panagiotis Grammelis

Centre for Research & Technology Hellas,

Chemical Process and Energy Resources Institute

regarding livestock sector under C.T.

• Greenhouse gasses (GHG) and its associated changes in mean climate variables \rightarrow climate variability affect the animal feed supply chain, the water resources as well as animal health and production.

regarding livestock sector under C.T.

- Greenhouse gasses (GHG) and its associated changes in mean climate variables \rightarrow climate variability affect the animal feed supply chain, the water resources as well as animal health and production.
- The livestock sector has a central role in food supply and security, as it contributes 15% in the meat, milk and eggs and 31% of global per capita calorie and protein supply, while the demand is expected to increase, due to population growth.

regarding livestock sector under C.T.

- Greenhouse gasses (GHG) and its associated changes in mean climate variables \rightarrow climate variability affect the animal feed supply chain, the water resources as well as animal health and production.
- The livestock sector has a central role in food supply and security, as it contributes 15% in the meat, milk and eggs and 31% of global per capita calorie and protein supply, while the demand is expected to increase, due to population growth.
- Intergovernmental Panel on Climate Change(IPCC) highlights the <u>substantial contribution of fossil</u> <u>fuel use in the livestock farming</u>, <u>indirect emissions</u>, on farm emissions and post farm emissions and the immediate need for the sector to meet the demands of Paris Agreement.

regarding livestock sector under C.T.

- Greenhouse gasses (GHG) and its associated changes in mean climate variables \rightarrow climate variability affect the animal feed supply chain, the water resources as well as animal health and production.
- The livestock sector has a central role in food supply and security, as it contributes 15% in the meat, milk and eggs and 31% of global per capita calorie and protein supply, while the demand is expected to increase, due to population growth.
- Intergovernmental Panel on Climate Change(IPCC) highlights the <u>substantial contribution of fossil</u> <u>fuel use in the livestock farming</u>, <u>indirect emissions</u>, <u>on farm emissions</u> and <u>post farm emissions</u> and the immediate need for the sector to meet the demands of Paris Agreement.
- There is no one-model size approach to reducing emissions from livestock ecosystem.

Each production system, species and location possesses unique characteristics, costs and benefits

LIVESTOCK (vs) GHG GHG (vs) LIVESTOCK

Increase of **Temperature**

Impact of Climate Change

on Livestock

Water

> Increase water consumption 2 to 3 times

Forage

- > Decrease nutrient availability
- ➤ Increase herbage growth on C4 species (30-35°C)
- > Decreases feed intake and efficiency of feed conversion (mostly livestock that are fed large amounts of high-quality feeds)

Production

- ➤ High producing dairy cows decrease milk production
- > Meat production in ruminants decreases because of a reduction in body size, carcass weight, and fat thickness

Reproduction

- > Decreases reproduction of cows, pigs and poultry of both sexes
 - Reduce reproduction efficiency on hens and consequently egg production

Health

- May induce high mortality in grazing cattle
- > New diseases may effect livestock immunity
 - > Prolonged high temperature may affect livestock health (e.g. Protein and lipid metabolism, liver functionality)

Forage

- > Long dry seasons decrease:
 - -Forage quality
 - -Forage growth -Biodiversity
- > Increases:
- -Pathogens
- Parasites -Disease spreading
- -Disease transmission
- -New diseases
- -Outbreak of severe disease
- -Spreading of vector-born diseases

Increase

Forage

- Changes in herbage growth (more effect on C3 species)
- Decreases forage quality (more effect on C3 species)
- > Positive effects on plants:
- -Partial stomata closure
- -Reduce transpiration
- -Improve water-use efficiency

- > Affect composition of pasture by:
- -Shifting of seasonal pattern
- -Changing optimal growth rate
- -Changing availability of water

- > Floods change:
 - -Form & structure of roots
 - -Leaf growth rate

Manure > Manure management Feed production Feed Feed production production > Crop residue > Feed: flooded rice **Feed production** management cultivation > Fertilizers > Leguminous application feed crops Manure Processing > Manure ➤ Atmospheric and decomposition nitrogen transport depositions > Transportation of live animals > Agricultural Animal production > Animal-product nitrogen fixation processing and > Enteric transportation Manure fermentation by Direct and indirect on-farm ruminant livestock energy use ➤ Applied and deposited manure **Feed production** > Manufacturing, packaging and ➤ Manure storage transport of fertilizers Land use change ➤ Land degradation > Cultivated soils Deforestation Impact of Livestock on Climate Change

Source: M.M. Rojas-Downing et al. / Climate Risk Management 16 (2017) 145-163

A BIBLIOMETRIC ANALYSIS ON TREND PRACTICES FOR

Clusters

- I. animal comfort,
- II. animal feeding,
- III. lowering the overall emissions
- IV. market need for adaptation
 - In order to underline the trends and the shortcomings in this critical issue

BUT WHY A BIBLIOMETRIC ANALYSIS

BIBLIOMETRIC ANALYSIS

IS

Summarizes large quantities of bibliometric data to present the state of the intellectual structure and emerging trends of a research topic or field.

- Quantitative (evaluation and interpretation)
 - Qualitative (interpretation only)

- Van Eck, N.J., & Waltman, L. (2014). Visualizing bibliometric networks. In Y. Ding, R. Rousseau, & D. Wolfram (Eds.), Measuring scholarly impact: Methods and practice (pp. 285–320)
- Junni P., Sarala P.M., Taras V. and Tarba S.Y., (2013) Organizational Ambidexterity and Performance: A Meta-Analysis , Academy of Management Perspectives VOL. 27, NO. 4 | Symposium
- N. Donthu et al. (2021) How to conduct a bibliometric analysis: An overview and guidelines, Journal of Business Research 133, (pp 285–296)
- Gaur A.and Kumar M. (2018) A systematic approach to conducting review studies: An assessment of content analysis in 25 years of IB research, Journal of World Business 53 (pp. 280–289)

BIBLIOMETRIC ANALYSIS

IS

Summarizes large quantities of bibliometric data to present the state of the intellectual structure and emerging trends of a research topic or field.

- Quantitative (evaluation and interpretation)
 - Qualitative (interpretation only)

WILL DO

In current research: Science mapping with

Co-word analysis

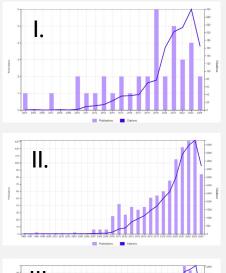
technique that examines
the existing or future relationships
among topics in a research field by focusing on
the written content of the publication itself.

- Van Eck, N.J., & Waltman, L. (2014). Visualizing bibliometric networks. In Y. Ding, R. Rousseau, & D. Wolfram (Eds.), Measuring scholarly impact: Methods and practice (pp. 285–320)
- Junni P., Sarala P.M., Taras V. and Tarba S.Y., (2013) Organizational Ambidexterity and Performance: A Meta-Analysis, Academy of Management Perspectives VOL. 27, NO. 4 | Symposium
- N. Donthu et al. (2021) How to conduct a bibliometric analysis: An overview and guidelines, Journal of Business Research 133, (pp 285–296)
- Gaur A.and Kumar M. (2018) A systematic approach to conducting review studies: An assessment of content analysis in 25 years of IB research, Journal of World Business 53 (pp. 280–289)

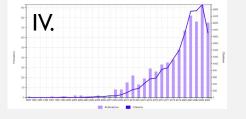
WEB OF SCIENCE

PRELIMINARY METADATA ANALYSIS UNDER TEXT MINING FUNCTIONALITY

Α.

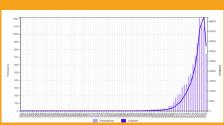

Livestock, climate change, animal **comfort**: 38 results (2003-2024)

II. Livestock, climate change, animal **feeding:** 1046 results (1996-2024)


III. Livestock, climate change, energy consumption: 275 results (1993-2024)

IV. Livestock, climate change, market:

697 results (1993-2024)



В.

THE GENERIC CASE

☐ Livestock, Climate change: 9.446 results (1939-2024)

Methodology:

Database: Web of science

Keywords:

Livestock [AND] Climate change

Sample: 9.446 different peer reviewed papers

Co-word analysis

Limitations:

Minimum citations: 10

Limitations on Clustering

Minimum resolution (1.0) (cluster formed under at least 20 iterations → strong interconnection)

Methodology:

Database: Web of science

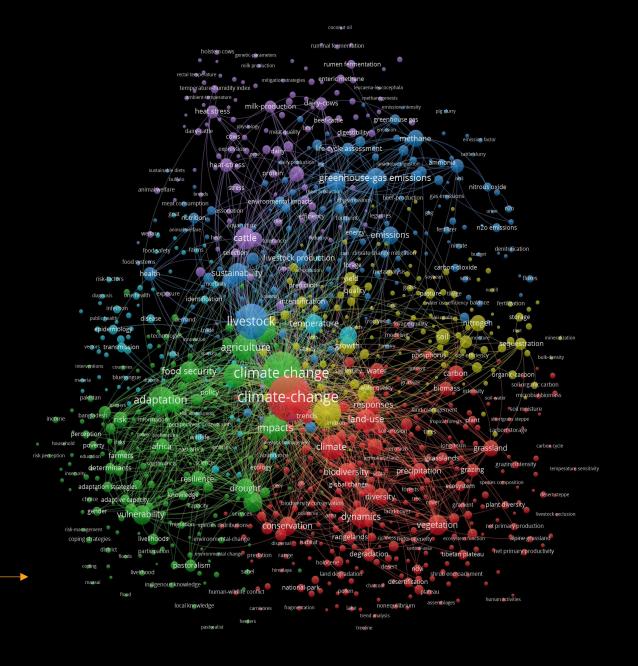
Keywords: Livestock [AND] Climate

change

Sample: 9.446 different peer reviewed papers

Co-word analysis

Limitations:

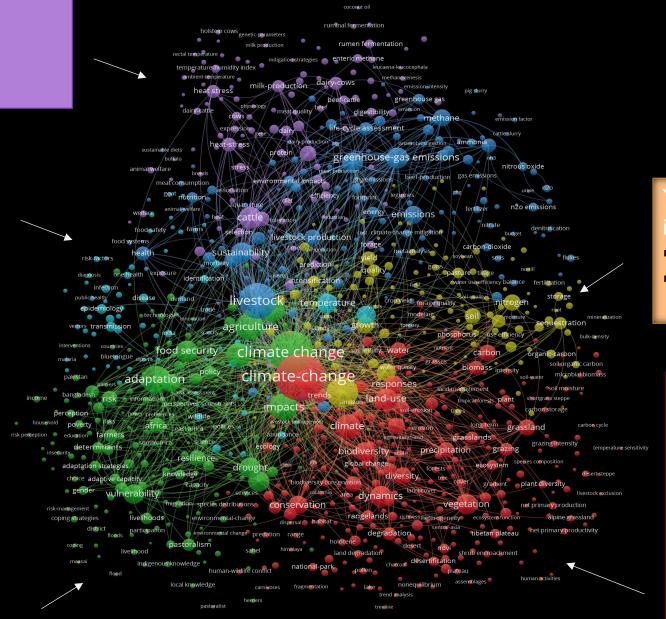

Minimum citations: 10

<u>Limitations on Clustering</u>

Minimum resolution (1.0)

(cluster formed under at least 20 iterations → strong interconnection)

Purple Clusters interconnections


- Dairy-cows
- Holstein Friesian (breed)
- Rumen fermentation (process)
- Coconut oil (animal feeding)

Blue Clusters interconnections

- Livestock
- GHG
- Welfare
- Climate policy
- Mature management
- Denitrifications
- Zoonosis | Malaria | Infection

Green Clusters interconnections

- Vulerability
- Pastoralism
- Local knowledge
- Farmers
- Income

5 Clusters

Yellow Clusters interconnections

- Nitrogen
- (Soil Carbon) Sequastration

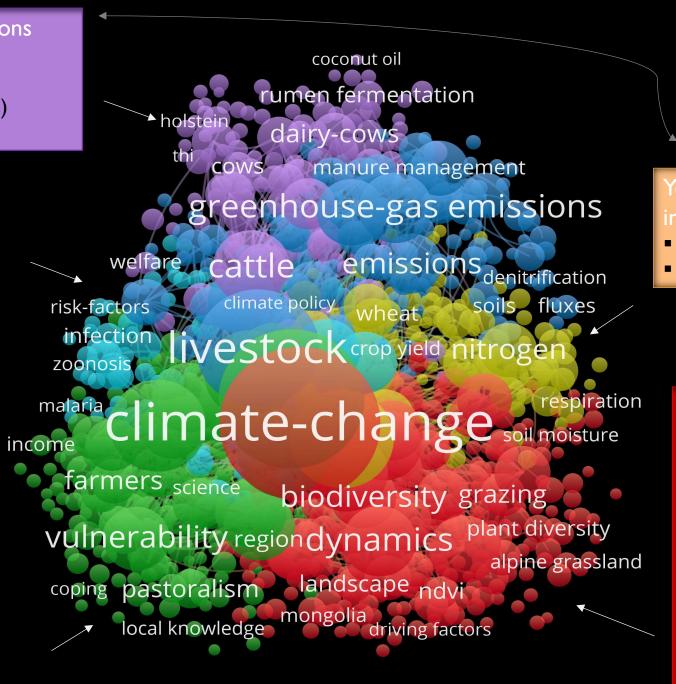
Red Clusters interconnections:

- Biodiversity
- Plant diversity
- Dynamics
- NDVI: NormalizedDifference VegetationIndex
- Grazing
- Alpine grassland

Purple Clusters interconnections

- Dairy-cows
- Holstein Friesian (breed)
- Rumen fermentation (process)
- Coconut oil (animal feeding)

Blue Clusters interconnections


- Livestock
- GHG
- Welfare
- Climate policy
- Mature management
- Denitrifications
- Zoonosis | Malaria | Infection

`→Animal wellbeing

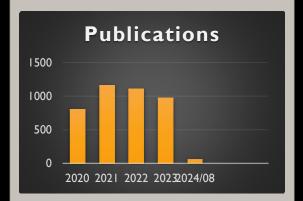
Green Clusters interconnections

- Vulnerability
- Pastoralism
- Local knowledge
- Farmers
- Income

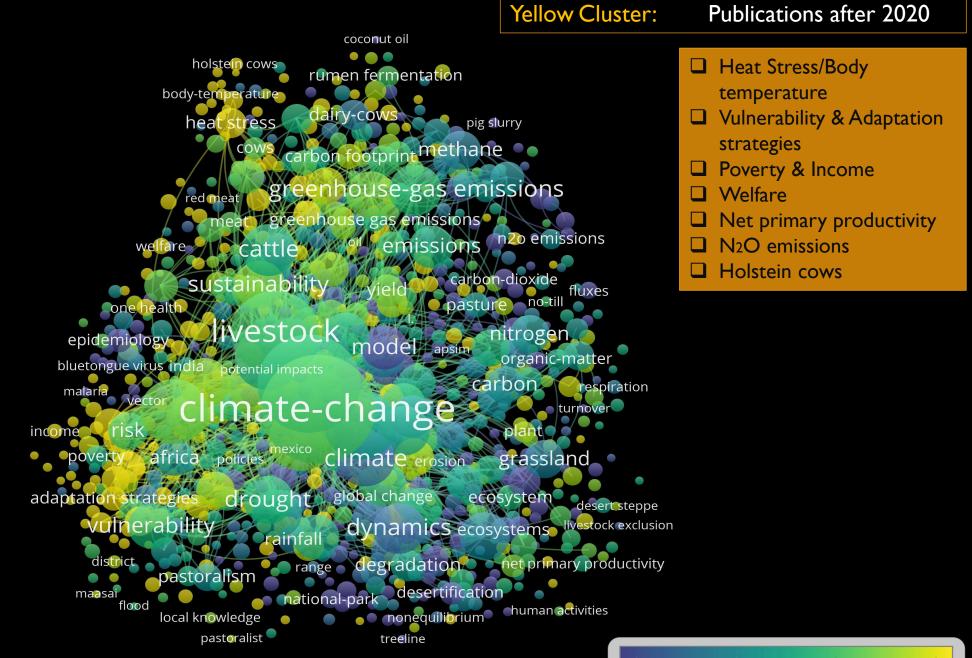
→ Market

5 Clusters

Yellow Clusters interconnections


- Nitrogen
- (Carbon)Sequastration

Red Clusters interconnections:


- Biodiversity / Plant diversity
- Dynamics
- NDVI: Normalized Difference Vegetation Index
- Grazing
- Alpine grassland
- → Animal feeding]

> At 2020 to 2024

- Starting at 2016 >400 per year
- > At 2015 to 2009 350< publications <100 per year
- ➤ Before 2000 <20 per year

2018

2019

2020

CONCLUSIONS

Core trends on research: New strategies for adaptation in climate transition &

Animals welfare (Heat stress)

Leading research: Animal capital relating to cattle

Mitigation of GHG emissions (N2O)

Limited research on

market and stakeholders: Institutional changes

(e.g. trade, conflict resolution, income stabilization programs ect)

www.res4live.eu

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No.101000785

